Characterstics and formation mechanism of pyrite tubes in sediments from Xisha Trough in northern South China Sea
Shi Si-Si1,2, Wu Chao-Dong1,2, Liang Jin-Qiang3, Wang Yi-Zhe1,2, Ye Yun-Tao4, Fang Yun-Xin3, Ma Jian1,2, Zhai Li-Na5
1 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Education,School of Earth and Space Sciences, Peking University,Beijing 100871,China; 2 Institute of Oil & Gas,Peking University,Beijing 100871,China; 3 Guangzhou Marine Geological Survey, Guangzhou,510760,China; 4 Research Institute of Exploration & Development,PetroChina,Beijing 100083,China; 5 Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences, Shandong Qingdao 266071,China
Abstract Authigenic pyrite is widely developed in sediments of core column at S1 in the Xisha Trough in northern South China Sea. It is mainly tubular in form and has inner hollow circle structures. In order to study the origin of tubular shape and circle structure,SEM,LA-ICP-MS,SIMS and other testing methods are used. The results show that: (1)Pyrite tubes have an inner hollow circle structure. The inner layer(Ipy) is composed of pyrite framboids which are densely packed as pyritohedron,while the outer layer(Opy) is composed of octahedron pyrite with better crystalline shape and larger grain size,mixed with sedimentary debris and calcareous biological shell. (2)The inner and outer layers are characterized by poor S-rich Fe and rich S-poor Fe respectively. It mainly resulted from the reduing environment caused by methane leakage,the lattice vacancy of pyrite which caused by the entry of As,and absorbing Ni,Co,Cu,Zn and other elements with similar radius and charge of Fe. (3)Pyrite tubes underwent distillation of sulfur isotopes,with an average of-37.8‰ for the inner layer and-29.3‰ for the outer layer. It is concluded that pyrite tubes served as a channel for methane leakage,the growth mechanism of which can be divided into three stages: (1)formation stage of gas-water channel: upward migration of methane fluids gradually forms gas-water channel in sediment pore;(2)formation stage of Opy: anaerobic oxidation of methane occurs when upward migration of methane and sulfate meet,the Opy with larger and better crystalline shape is gradually formed;(3)formation stage of Ipy: with the concentration of methane decreases gradually and the action of microorganisms in the air-water channel,the remaining methane reacts with downward sulfate to form the Ipy. Therefore,a large number of tubular pyrites in mudstones in the northern South China Sea are often related to the presence of methane hydrates in the formation.
Corresponding Authors:
Wu Chao-Dong,male,born in 1965,doctoral supervisor of School of Earth and Space Sciences,Peking University,is engaged in sedimentology and reservoir geology. E-mail: cdwu@pku.edu.cn.
About author: Shi Si-Si,female,born in 1993,is a master degree candidate of geology at School of Earth and Space Sciences,Peking University. E-mail: shisisi@pku.edu.cn.
Cite this article:
Shi Si-Si,Wu Chao-Dong,Liang Jin-Qiang et al. Characterstics and formation mechanism of pyrite tubes in sediments from Xisha Trough in northern South China Sea[J]. JOPC, 2020, 22(1): 175-192.
Shi Si-Si,Wu Chao-Dong,Liang Jin-Qiang et al. Characterstics and formation mechanism of pyrite tubes in sediments from Xisha Trough in northern South China Sea[J]. JOPC, 2020, 22(1): 175-192.
[1] 陈忠,颜文,陈木宏,陆钧,古森昌. 2007. 南沙海槽表层沉积自生石膏—黄铁矿组合的成因及其对天然气渗漏的指示意义. 海洋地质与第四纪地质, 27(2): 91-100. [Chen Z,Yan W,Chen M H,Lu J,Gu S C.2007. Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha Trough,South China Sea. Marine Geology and Quaternary Geology, 27(2): 91-100] [2] 冯东,陈多福,苏正,刘芊. 2006. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展. 海洋地质与第四纪地质, 26(3): 125-131. [Feng D,Chen D F,Su Z,Liu Q.2006. Anaerobic oxidation of methane and seep carbonate precipitation kinetics at seafloor. Marine Geology and Quaternary Geology, 26(3): 125-131] [3] 李绪宣,朱光辉. 2005. 琼东南盆地断裂系统及其油气输导特征. 中国海上油气(工程), 17(1): 1-7. [Li X X,Zhu G H.2005. The fault system and its hydrocarbon carrier significance in Qiongdongnan basin. China Offshore Oil and Gas(Engineering), 17(1): 1-7] [4] 陆红锋,陈芳,廖志良,孙晓明,刘坚,程思海,付少英. 2007. 南海东北部HD196A岩心的自生条状黄铁矿. 地质学报, 81(4): 519-525. [Lu H F,Chen F,Liao Z L,Sun X M,Liu J,Cheng S H,Fu S Y.2007. Authigenic pyrite rods from the core HD196A in the Northeastern South China Sea. Acta Geologica Sinica, 81(4): 519-525] [5] 陆红锋,刘坚,吴庐山,陈芳,廖志良. 2015. 南海天然气水合物钻孔自生黄铁矿硫同位素特征. 地学前缘, 22(2): 200-206. [Lu H F,Liu J,Wu L S,Chen F,Liao Z L.2015. Sulfur isotopes of authigenic pyrites in the sediments of gas-hydrate drilling sites,Shenhu area,South China Sea. Earth Science Frontiers, 22(2): 200-206] [6] 陆红锋,孙晓明,张美. 2011. 南海天然气水合物沉积物矿物学和地球化学. 北京: 科学出版社,16-33. [Lu H F,Sun X M,Zhang M. 2011. Mineralogy and Geochemistry of Sediments from Gas Hydrate in South China Sea. Beijing: Science Press,16-33] [7] 卢振权,祝有海,张永勤,文怀军,李永红,贾志耀,王平康,李清海. 2010. 青海祁连山冻土区天然气水合物的气体成因研究. 现代地质, 24(3): 581-588. [Lu Z Q,Zhu Y H,Zhang Y Q,Wen H J,Li Y H,Jia Z Y,Wang P K,Li Q H.2010. Study on genesis of gases from gas hydrate in the Qilian Mountain Permafrost,Qinghai. Geoscience, 24(3): 581-588] [8] 蒲晓强,陶小晚,张会领. 2016. 南海北部陆坡天然气水合物存在的地球物理和地球化学特征. 天然气地球科学, 20(4): 620-626. [Pu X Q,Tao X W,Zhang H L.2009. Geophysical and Geochemical characteristics of gas hydrates in the Slope of Northern South China Sea. Natural Gas Geoscience, 20(4): 620-626] [9] 蒲晓强,钟少军,于雯泉,陶小晚. 2006. 南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示. 科学通报, 51(24): 2874-2880. [Pu X Q,Zhong S J,Yu W Q,Tao X W.2006. Autogenetic sulfide of sedimentfrom Drillhole NH-1 in northern slope of China South Sea,and the indication of its sulfur isotope for methane and gas hydrate in depth. Chinese Science Bulletin, 51(24): 2874-2880] [10] 苏新,陈芳,陆红锋,黄永祥. 2008. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探. 现代地质, 22(3): 376-381. [Su X,Chen F,Lu H F,Huang Y X.2008. A preliminary study on the relationship between the microstructure and fluid activity of the authigenic carbonate rocks of the deep-sea methane cold spring in the north of the South China Sea. Geoscience, 22(3): 376-381] [11] 王平康,祝有海,卢振权,黄霞,庞守吉,张帅,江少卿,李清海,杨开丽,李冰. 2014. 祁连山冻土区天然气水合物成藏体系中自生黄铁矿地球化学特征与成因探讨. 中国科学: 地球科学, 44(6): 1283-1297. [Wang P K,Zhu Y H,Lu Z Q,Huang X,Pang S J,Zhang S,Jiang S Q,Li Q H,Yang K L,Li B.2014. Geochemistry and genesis of authigenic pyrite from gas hydrate accumulation system in the Qilian Mountain permafrost,Qinghai,northwest China. Science China: Earth Sciences, 44(6): 1283-1297] [12] 王晓芹,王家生,魏清,陈祈,李清,胡高伟,高钰涯. 2008. 综合大洋钻探计划311航次沉积物中自生碳酸盐岩碳、氧稳定同位素特征. 现代地质, 22(3): 397-401. [Wang X Q,Wang J S,Wei Q,Chen Q,Li Q,Hu G W,Gao Y Y.2008. Stable carbon and oxygen isotopes characteristics of the authigenic carbonate in recovered sediments during IODP 311 Expedition. Geoscience, 22(3): 397-401] [13] 张美,陆红锋,邬黛黛,刘丽华,吴能友. 2017. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示. 海洋地质与第四纪地质, 37(6): 178-188. [Zhang M,Lu H F,Wu D D,Liu L H,Wu N Y.2017. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas,South China Sea. Marine Geology and Quaternary Geology, 37(6): 178-188] [14] 张美,孙晓明,芦阳,徐莉,陆红锋. 2011. 南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义. 矿床地质, 30(4): 725-734. [Zhang M,Sun X M,Lu Y,Xu L,Lu H F.2011. Mineralogy of authigenic tube pyrite from the Southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates. Mineral Deposits, 30(4): 725-734] [15] 朱光辉,陈刚,刁应护. 2000. 琼东南盆地温压场特征及其与油气运聚的关系. 中国海上油气(地质), 14(1): 29-36. [Zhu G H,Chen G,Diao Y H.2000. Characteristics of geotherm-pressure field and its pelationship with hydrocarbon migration and accumulation in Qiongdongnan Basin,South China Sea. China Offshore Oil and Gas(Geology), 14(1): 29-36] [16] 祝有海,饶竹,刘坚,刘亚玲,白瑞梅. 2005. 南海西沙海槽S14站位的地球化学异常特征及其意义. 现代地质, 19(1): 39-44. [Zhu Y H,Rao Z,Liu J,Liu Y L,Bai R M.2005. Geochemical anomalies and their implication from Site 14,the Xisha Trough,the South China Sea. Geoscience, 19(1): 39-44] [17] Aharon P,Fu B.2000. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater gulf of mexico. Geochimica et Cosmochimica Acta, 64(2): 233-246. [18] Aharon P,Fu B.2003. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chemical Geology, 195(1-4): 201-218. [19] Arndt S,Jørgensen B B,Larowe D E,Middelburg J J,Pancost R D,Regnier P.2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews, 123: 53-86. [20] Borowski W S.1998. Pore-water sulfate concentration gradients,isotopic compositions,anddiagenetic processes overlying continental margin,methane-rich sediments accociated with gas hydrates. Doctoral Dissertaion. North Carolina: University of North Carolina at Chapel Hill. [21] Borowski W S,Paull C K,Ussler W.1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7): 655-658. [22] Borowski W S,Hoehler T M,Alperin M J,Rodrigez N M,Paull C K. 2000. Significance ofanaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge Gas Hydrates. In: Paul1 C K,Matsumoto R,Wallace P J et al(eds). Proceedings of the Ocean Drilling Program,Scientific Results, 164: 87-99. [23] Borowski W S,Rodriguez N M,Paull C K,Ussler W.2013. Are 34s-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Marine and Petroleum Geology, 43: 381-395. [24] Böning P,Brumasack H J,Böttcher M E,Schnetger B,Kriete C,Kallmeyer J,Borchers S L.2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta,2004, 68(21): 4429-4451. [25] Cavagna S,Clari P,Martire L.1999. The role of bacteria in the formation of cold seep carbonates: Geological evidence from Monferrato(Tertiary,NWItaly). Sedimentary Geology, 126(1-4): 253-270. [26] Chambers L A,Trudinger P A.1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiology Journal, 1(3): 249-293. [27] Chen D F,Feng D,Su Z,Song Z G,Chen G Q,Lawrence M C.2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering: C, 26(4): 602-605. [28] Deditius A P,Utsunomiya S,Renock D,Ewing R C,Ramana C V,Becker U,Kesler S E.2008. A proposed new type of arsenian pyrite: Composition,nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12): 2919-2933. [29] Habicht K S,Canfield D E.2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29(6): 555-558. [30] Henrichs S M,Reeburgh W S.1987. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5(3-4): 191-237. [31] Huang B J,Xiao X M,Zhang M Q.2003. Geochemistry,grouping and origins of crude oils in the western pearl river mouth basin,offshore South China Sea. Organic Geochemistry, 34(7): 993-1008. [32] Jørgensen B B,Böttcher M E,Lüschen H,Neretin L N,Volkov I Ⅰ.2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9): 2095-2118. [33] Kohn M J,Riciputi L R,Stakes D,Orange D L.1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization?. American. Mineralogist, 83(11-12): 1454-1468. [34] Lim Y C,Lin S,Yang T F,Chen Y G,Liu C S.2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Marine & Petroleum Geology, 28(10): 1829-1837. [35] Lin Q,Wang J S,Katie Taladay,Lu H F,Hu G W,Sun F,Lin R X.2016. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone(SMTZ)in the northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. [36] Lin Z Y,Sun X M,Harald Strauss,Lu Y,Gong J L,Xu L,Lu H F,Barbara M A,Teichert,Jörn Peckmann.2017a. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153-173. [37] Lin Z Y,Sun X M,Lu Y,Harald Strauss,Xu L,Gong J L,Barbara M A,Teichert,Lu R F,Lu H F,Sun W D,Jörn Peckmann.2017b. the enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chemical Geology, 449: 15-29. [38] Lin Z Y,Sun X M,Lu Y,Harald Strauss,Yang L,Michael E Böttcher,Barbara M A,Teichert,Gong J L,Xu L,Liang J Q,Lu H F,Jörn Peckmann.2018. Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment. Marine Geology, 403: 271-284. [39] Mcdonnell S L,Max M D,Cherkis N Z,Czarnecki M F.2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17(8): 929-936. [40] Morse J W,Millero F J,Cornwell J C,Rickard D.1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Reviews, 24(1): 1-42. [41] Pohlman J W,Ruppel C,Hutchinson D R,Downer R,Coffin R B.2008. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico. Marine and Petroleum Geology, 25(9): 942-951. [42] Rao V P,Kessarkar P M,Patil S K,Ahmad S M.2008. Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: Diagenetic and environmental implications during the late Quaternary. Palaeogeography,Palaeoclimatology,Palaeoecology, 270(1-2): 46-52. [43] Rees C E, Jenkins W J, Monster J.1978. The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta, 42(4): 377-381. [44] Reeburgh W S.1976. Methane consumption in Cariaco Trench waters and sediments. Earth & Planetary Science Letters, 28(3): 337-344. [45] Sassen R,Roberts H H,Carney R,Milkov A V,Defreitas D A,Lanoil B.2004. Free hydrocarbon gas,gas hydrate,and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: Relation to microbial processes. Chemical Geology, 205(3-4): 195-217. [46] Tribovillard N,Algeo T J,Lyons T,Riboulleau A.2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32. [47] Wang J S,Chen Q,Wei Q. 2008. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin,northeastern pacific. In: Abstracts of 6th International Conference on Gas Hydrates,Wagonercouver. [48] Wilkin R T,Arthur M A.2001. Variations in pyrite texture,sulfur isotope composition,and iron systematics in the black sea: Evidence for late pleistocene to holocene excursions of the O2-H2S redox transition. Geochimica Et Cosmochimica Acta, 65(9): 1399-1416. [49] Xie L,Wang J S,Wu N Y,Wu D D,Wang Z,Zhu X W,Hu J,Chen H R,Lin Q.2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China Earth Science, 56(4): 541-548. [50] Yoshinaga M Y,Holler T,Goldhammer T,Wegener G,Pohlman J W,Brunner B,Kuypers M M,Hinrichs K U,Elvert M.2014. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nature Geoscience, 7(3): 190-194. [51] Zhang M,Konishi H,Xu H F,Sun X M,Lu H F,Wu D D,Wu N Y.2014. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences,92: 293-301. [52] Zopfi J,Bottcher M E,Jørgensen B B.2000. Early diagenesis and isotope biogeochemistry of sulfur in Thioploca-dominated sediments off Chile. Doctoral Dissertation. Bremen: Bremen University,85-109.