Research advances,geological implication and application in Ordos Basin of the “pore-size controlled precipitation” in diagenesis of carbonate rock reservoir
Xiong Ying1,2,3, Tan Xiu-Cheng1,2, Wu Kun-Yu1, Wang Xiao-Fang4
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 2 Southwest Petroleum University,Division of Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500,China; 3 Institute of Subsurface Energy Systems,Clausthal University of Technology,Clausthal-Zellerfeld 38678,Germany; 4 PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023,China
Abstract Based on the discovery of pore-size controlled mineral precipitation and cementation heterogeneity in carbonate rock reservoirs,the state of art and the geological implications are summarized,referring to the fluid-rock interaction and chemical hydrodynamics in porous media. (1)The pore-size controlled precipitation phenomenon is common in geological environments,as shown by the heterogeneous cementation and eventual features that the large pores are filled while small pores can be preserved. Related studies are mainly divided into three aspects,including pore structure observations at different scales,numerical simulation of fluid-rock interaction and mineral precipitation experiment. (2)The kinetic models related to surface chemistry can be used to explain the heterogeneous precipitation affected by pore-size distribution. The larger interfacial tension and mineral crystal curvature in the micropores result in the much higher effective solubility.Thus the fluids in micropores can maintain a higher supersaturation with no minerals precipitation. (3)The pore-size controlled precipitation leads to the selective preservation of micropores. It means that the much larger pores tend to be cement-filled while the smaller pores are preserved in the case of coexistence of pores at different scales. The impacts of cementation types on the overall permeability of rock are different. The pore-size controlled precipitation phenomenon is also worthy of attention in the research of geothermal development and geologic sequestration of carbon dioxide. In the last part, based on the heterogeneous cementation and porosity distribution of the Majiagou Formation in the Ordos Basin,we study the impacts of diagenetic fluids properties,origin and cementation patterns on the evolution of pore structure and high-quality reservoir distribution.The discovery and emphasis of pore-size controlled precipitation is of great theoretical significance to our understanding of the complex fluid-rock interaction process,which provides a new perspective for reservoir diagenesis and pore preservation.
Fund:National Science and Technology Major Project(Nos. 2016ZX05004002-001,2016ZX05004006-001-002)and PetroChina Science and Technology Project(No.2019B-0406)
Corresponding Authors:
Tan Xiu-Cheng,born in 1970,professor and Ph.D. advisor,is mainly engaged in sedimentology and reservoir geology. E-mail: tanxiucheng70@163.com.
About author: Xiong Ying,born in 1993,Ph.D. candidate,is mainly engaged in reservoir geology. E-mail: xiongying511602@163.com.
Cite this article:
. Research advances,geological implication and application in Ordos Basin of the “pore-size controlled precipitation” in diagenesis of carbonate rock reservoir[J]. JOPC, 2020, 22(4): 744-760.
. Research advances,geological implication and application in Ordos Basin of the “pore-size controlled precipitation” in diagenesis of carbonate rock reservoir[J]. JOPC, 2020, 22(4): 744-760.
[1] 付金华,吴兴宁,孙六一,于洲,黄正良,丁振纯. 2017. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义. 天然气工业, 37(3): 9-16. [Fu J H,Wu X N,Sun L Y,Yu Z,Huang Z L,Ding Z C.2017. New understandings of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance. Natural Gas Industry, 37(3): 9-16] [2] 付斯一,张成弓,陈洪德,陈安清,赵俊兴,苏中堂,杨帅,王果,密文天. 2019. 鄂尔多斯盆地中东部奥陶系马家沟组五段盐下白云岩储集层特征及其形成演化. 石油勘探与开发, 46(6): 1-12. [Fu S Y,Zhang C G,Chen H D,Chen A Q,Zhao J X,Su Z T,Yang S,Wang G,Mi W T.2019. Characteristics,formation and evolution of pre-salt dolomite reservoirs in the fifth member of the Ordovician Majiagou Formation,mid-east Ordos Basin,NW China. Petroleum Exploration and Development, 46(6): 1-12] [3] 黄擎宇,张哨楠,丁晓琪,段杰,向雷. 2010. 鄂尔多斯盆地西南缘奥陶系马家沟组白云岩成因研究. 石油实验地质, 32(2): 147-153. [Huang Q Y,Zhang S N,Ding X Q,Duan J,Xiang L.2010. Origin of dolomite of Ordovician Majiagou Formation,western and southern margin of the Ordos Basin. Petroleum Geology & Experiment, 32(2): 147-153] [4] 李凌,谭秀成,丁熊,吴晓庆,邹春,周素彦,黄先平,石学文. 2011. 四川盆地雷口坡组台内滩与台缘滩沉积特征差异及对储层的控制. 石油学报, 32(1): 70-76. [Li L,Tan X C,Ding X,Wu X Q,Zou C,Zhou S Y,Huang X P,Shi X W.2011. Difference in depositional characteristics between intra-platform and margina-l platform shoals in Leikoupo Formation,Sichuan Basin and its impact on reservoirs. Acta Petrolei Sinica, 32(1): 70-76] [5] 刘树根,马永生,王国芝,蔡勋育,黄文明,张长俊,徐国盛,雍自权,盘昌林. 2008. 四川盆地震旦系—下古生界优质储层形成与保存机理. 油气地质与采收率, 15(1): 1-5. [Liu S G,Ma Y S,Wang G Z,Cai X Y,Huang W M,Zhang C J,Xui G S,Yong Z Q,Pan C L.2008. Formation and conservation mechanism of the high-quality reservoirs in Sinian-lower Palaeozoic in Sichuan Basin. Petroleum Geology and Recovery Efficiency, 15(1): 1-5] [6] 刘耘,谭秀成,刘显岩,何为,熊鹰,刘灵,刘明洁,杨清宇. 2018. 鄂尔多斯盆地中部马五7亚段颗粒滩沉积特征及空间分布. 沉积学报, 36(4): 796-806. [Liu Y,Tan X C,Liu X Y,He W,Xiong Y,Liu L,Liu M J,Yang Q Y.2018. Sedimentary characteristics and distribution of grain shoals of Ma57 submember in the Central Ordos Basin. Acta Sedimentologica Sinica, 36(4): 796-806] [7] 马永生,郭彤楼,赵雪凤,蔡勋育. 2007. 普光气田深部优质白云岩储层形成机制. 中国科学: 地球科学,37(S2): 43-52. [Ma Y S,Guo T L,Zhao X F,Cai X Y.2007. Formation mechanism of deep high quality reservoir in Puguang Gas Field. Science China: Earth Sciences,37(S2): 43-52.] [8] 佘敏,寿建峰,沈安江,潘立银,胡安平,胡圆圆. 2016. 碳酸盐岩溶蚀规律与孔隙演化实验研究. 石油勘探与开发, 43(4): 564-572. [She M,Shou J F,Shen A J,Pan L Y,Hu A P,Hu Y Y.2016. Experimental simulation of dissolution law and porosity evolution of carbonate rock. Petroleum Exploration and Development, 43(4): 564-572] [9] 谭秀成,罗冰,李卓沛,丁熊,聂勇,吴兴波,邹娟,唐青松. 2011. 川中地区磨溪气田嘉二段砂屑云岩储集层成因. 石油勘探与开发, 38(3): 268-274. [Tan X C,Luo B,Li Z P,Ding X,Nie Y,Wu X B,Zou J,Tang Q S.2011. Jia2 member doloarenite reservoir in the Moxi gas field,middle Sichuan Basin. Petroleum Exploration and Development, 38(3): 268-274] [10] 王保全,强子同,张帆,王兴志,王一,曹伟. 2009. 鄂尔多斯盆地奥陶系马家沟组马五段白云岩的同位素地球化学特征. 地球化学, 38(5): 472-479. [Wang B Q,Qiang Z T,Zhang F,Wang X Z,Wang Y,Cao W.2009. Isotope characteristics of dolomite from the fifth member of the Ordovician Majiagou Formation,the Ordos Basin. Geochimica, 38(5): 472-479] [11] 王国芝,刘树根,李娜,王东,高媛. 2013. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制. 岩石学报, 30(3): 667-678. [Wang G Z,Liu S G,Li N,Wang D,Gao Y.2013. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin. Acta Petrologica Sinica, 30(3): 667-678] [12] 席胜利,熊鹰,刘显阳,雷晶超,刘明洁,刘灵,刘耘,文汇博,谭秀成. 2017. 鄂尔多斯盆地中部奥陶系马五盐下沉积环境与海平面变化. 古地理学报, 19(5): 773-790. [Xi S L,Xiong Y,Liu X Y,Lei J C,Liu M J,Liu L,Liu Y,Wen H B,Tan X C.2017. Sedimentary environment and sea level change of the subsalt interval of Member 5 of Ordovician Majiagou Formation in central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 773-790] [13] 夏明军,邓瑞健,姜贻伟,毕建霞,靳秀菊,郭海霞,万小伟. 2009. 普光气田鲕滩储层形成的物质基础和保存成因. 断块油气田, 16(6): 5-9. [Xia M J,Deng R J,Jiang Y W,Bi J X,Jin X J,Guo H X,Wan X W.2009. Exposition on material base and preservation causes of oolitic beach reservoir in Puguang Gas Field. Fault-Block Oil and Gas Field, 16(6): 5-9] [14] 杨华,包洪平,马占荣. 2014. 侧向供烃成藏: 鄂尔多斯盆地奥陶系膏盐岩下天然气成藏新认识. 天然气工业, 34(4): 19-26. [Yang H,Bao H P,Ma Z R.2014. Reservoir-forming by lateral supply of hydrocarbon: A new understanding of the formation of Ordovician gas reservoirs under gypsolyte in the Ordos Basin. Natural Gas Industry, 34(4): 19-26] [15] 赵文智,沈安江,郑剑锋,乔占峰,王小芳,陆俊明. 2014. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义. 中国科学: 地球科学, 44(9): 1925-1939. [Zhao W Z,Shen A J,Zheng J F,Qiao Z F,Wang X F,Lu J M.2014. The porosity origin of dolostone reservoirs in the Tarim,Sichuan and Ordos basins and its implication to reservoir prediction. Science China: Earth Sciences, 44(9): 1925-1939] [16] 郑剑锋,沈安江,黄理力,陈永权,佘敏. 2017. 基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究: 以塔里木盆地下寒武统肖尔布拉克组为例. 石油实验地质, 39(5): 716-723. [Zheng J F,Shen A J,Huang L L,Chen Y Q,She M.2017. Pore effect of dolomite reservoirs based on burial dissolution simulation: A case study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin. Petroleum Geology & Experiment, 39(5): 716-723] [17] Adamson A W.1976. The Physical Chemistry of Surfaces. New York: Wiley,61. [18] Bathurst R G C.1975. Carbonate Sediments and Their Diagenesis. Amsterdam: Elsevier,658. [19] Berner R A.1971. Principles of Chemical Sedimentology. New York: McGraw-Hill,240. [20] Berner R A.1980. Early Diagenesis: A Theoretical Approach. Princeton,New Jersey: Princeton University Press,101. [21] Bloch S.1991. Empirical prediction of porosity and permeability in sandstones. AAPG Bulletin, 75(7): 1145-1160. [22] Borgomano J,Masse J P,Fenerci-Masse M,Fournier F.2013. Petrophysics of Lower Cretaceous platform carbonate outcrops in Provence(SE France): Implications for carbonate reservoir characterization. Journal of Petroleum Geology, 36(1): 5-41. [23] Borgia A,Pruess K,Kneafsey T J,Oldenburg C M,Pan L.2012. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system. Geothermics, 44: 13-22. [24] Clauser C.2003. Numerical Simulation of Reactive Flow in Hot Aquifers-SHEMAT and Processing SHEMAT. Heidelberg: Springer Publishers,229. [25] Cohen Y,Rothman D H.2015. Mechanisms for mechanical trapping of geologically sequestered carbon dioxide. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences, 471(2175): 20140853. [26] Ehrenberg S N,Walderhaug O.2015. Preferential calcite cementation of macropores in microporous limestones. Journal of Sedimentary Research, 85(7): 780-793. [27] Ehrenberg S N,Walderhaug O,Bjørlykke K.2012. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? AAPG Bulletin, 96(2): 217-233. [28] Emmanuel S,Ague J J,Walderhaug O.2010. Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone. Geochimica et Cosmochimica Acta, 74(12): 3539-3552. [29] Emmanuel S,Berkowitz B.2005. Mixing-induced precipitation and porosity evolution in porous media. Advances in Water Resources, 28(4): 337-344. [30] Emmanuel S,Berkowitz B.2007. Effects of pore-size controlled solubility on reactive transport in heterogeneous rock. Geophysical Research Letters, 34(6): L06404. [31] Evans R.1999. Fluids in model pores or cavities: The influence of confinement on sructure and phase behaviour. In: New Approaches to Problems in Liquid State Theory. Dordrecht:Kluwer Academic Publishers,153-172. [32] Fabricius I L,Borre M K.2007. Stylolites,porosity,depositional texture,and silicates in chalk facies sediments. Ontong Java Plateau-Gorm and Tyra fields,North Sea. Sedimentology, 54(1): 183-205. [33] Flatt R J.2002. Salt damage in porous materials: How high supersaturations are generated. Journal of Crystal Growth, 242(3): 435-454. [34] Freeze R A,Cherry J A.1979. Groundwater: Englewood Cliffs. New Jersey: Pretice-Hall,604. [35] Gibson-Poole C M,Svendsen L,Underschultz J,Watson M N,Ennis-King J,Wagoner Ruth P J,Nelson E J,Daniel R F,Cinar Y.2008. Site characterisation of a basin-scale C geological storage system: Gippsland Basin,southeast Australia. Environmental Geology, 54(8): 1583-1606. [36] Grötsch J,Suwaina O,Ajlani G,Taher A,El-Khassawneh R,Lokier S,Coy G,Weerd E V D,Weerd D,Maselmeh S,Dorp J V.2003. The Arab Formation in central Abu Dhabi: 3-D reservoir architecture and static and dynamic modeling. GeoArabia, 8(1): 47-86. [37] He X Y,Shou J F,Shen A J,Wu X N,Wang Y S,Hu Y Y,Zhu Y,Wei D X.2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Ordovician Majiagou Formation Member 5 of the west of Jingbian Gas Field,Ordos Basin,North China. Petroleum Exploration and Development, 41(3): 417-427. [38] Hedges L O,Whitelam S.2012. Patterning a surface so as to speed nucleation from solution. Soft Matter, 8(33): 8624-8635. [39] Henisch H K,Nassau K.1990. Crystals in gels and Liesegang Rings. Physics Today, 43(6): 75-77. [40] Jamtveit B,Krotkiewski M,Kobchenko M,Renard F,Angheluta L.2014. Pore-space distribution and transport properties of an andesitic intrusion. Earth and Planetary Science Letters, 400: 123-129. [41] Kerr R C,Tait S R.1985. Convective exchange between pore fluid and an overlying reservoir of denser fluid: A post-cumulus process in layered intrusions. Earth and Planetary Science Letters, 75(2-3): 147-156. [42] Kubota N,Kawakami T,Tadaki T.1986. Calculation of supercooling temperature for primary nucleation of potassium nitrate from aqueous solution by the two-kind active site model. Journal of Crystal Growth, 74(2): 259-274. [43] Lasagaa C.1998. Kinetic Theory in the Earth Sciences. Princeton,New Jersey: Princeton University Press,131. [44] Li Q,Ito K,Wu Z,Lowry C S,Loheide II S P.2009. COMSOL Multiphysics: A novel approach to ground water modeling. Groundwater, 47(4): 480-487. [45] Lucia F J,Loucks R G.2013. Microporosity in carbonatemud: Early development and petrophysics. GCAGS Journal, 2: 29-41. [46] Mürmann M,Kühn M,Pape H,Clauser C.2013. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs. Energy Procedia, 40: 107-116. [47] Melia T P,Moffitt W P.1964. Crystallization from aqueous solution. Journal of Colloid Science, 19(5): 433-447. [48] Nguyen B T,Jones S J,Goulty N R,Middleton A J,Grant N,Ferguson A,Bowen L.2013. The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the Central Graben,North Sea. AAPG Bulletin, 97(8): 1273-1302. [49] Ozawa H.1997. Thermodynamics of frost heaving: A thermodynamic proposition for dynamic phenomena. Physical Review E, 56(3): 2811-2816. [50] Putnis A,Mauthe G.2001. The effect of pore size on cementation in porous rocks. Geofluids, 1(1): 37-41. [51] Putnis A,Prieto M,Fernandez-Diaz L.1995. Fluid supersaturation and crystallization in porous media. Geological Magazine, 132(1): 1-13. [52] Prieto M.2014. Nucleation and supersaturation in porous media(revisited). Mineralogical Magazine, 78(6): 1437-1448. [53] Richard J,Sizun J P,Machhour L.2007. Development and compartmentalization of chalky carbonate reservoirs: The Urgonian Jura-Bas Dauphiné platform model(Génissiat,southeastern France). Sedimentary Geology, 198(3-4): 195-207. [54] Rijniers L A,Huinink H P,Pel L,Kopinga K.2005. Experimental evidence of crystallization pressure inside porous media. Physical Review Letters, 94(7): 075503. [55] Scherer G W.1999. Crystallization in pores. Cement and Concrete Research, 242: 1347-1358. [56] Scherer G W.2004. Stress from crystallization of salt. Cement and Concrete Research, 34(9): 1613-1624. [57] Simonyan A V,Dultz S,Behrens H.2012. Diffusive transport of water in porous fresh to altered mid-ocean ridge basalts. Chemical Geology, 306: 63-77. [58] Singurindy O,Berkowitz B.2003. Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock. Water Resources Research, 39(1): 1/8-13/8. [59] Stack A G.2015. Precipitation in pores: A geochemical frontier. Reviews in Mineralogy and Geochemistry, 80(1): 165-190. [60] Stack A G,Fernandez-Martinez A,Allard L F,Banñuelos J L,Rother G,Anovitz L M,Cole D R,Waychunas G A.2014. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. Environmental Science and Technology, 48(11): 6177-6183. [61] Stack A G,Kent P R C.2015. Geochemical reaction mechanism discovery from molecular simulation. Environmental Chemistry, 12(1): 20-32. [62] Steefel C I,Lichtner P C.1998. Multicomponent reactive transport in discrete fractures: Ⅰ. Controls on reaction front geometry. Journal of Hydrology(Amsterdam), 209(1-4): 1-199. [63] Steefel C I,Wagoner Cappellen P.1990. A new kinetic approach to modeling water-rock interaction: The role of nucleation,precursors,and Ostwald ripening. Geochimica et Cosmochimica Acta, 54(10): 2657-2677. [64] Wagner R,Kühn M,Meyn V,Pape H,Vath U,Clauser C.2005. Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite. International Journal of Rock Mechanics and Mining Sciences, 42(7-8): 1070-1081. [65] Wang G,Wang C,Guo K.2009. Self-sealing behavior of high level waste repository in rock salt formation. In: 2009 International Conference on Engineering Computation. IEEE Computer Society: 44-46. [66] Xiao D,Tan X C,Xi A H,Liu H,Shan S J,Xia J W,Cheng Y,Lian C B.2016. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou formation,southern Sichuan Basin,SW China. Marine and Petroleum Geology, 72: 218-233. [67] Xiao D,Tan X C,Zhang D F,He W,Li L,Shi Y H,Chen J P,Cao J.2019. Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin(central China)and their heterogeneous impact on reservoir quality. Marine and Petroleum Geology, 99: 190-207. [68] Xiong Y,Tan X C,Zuo Z F,Zou G L,Liu M J,Liu Y,Liu L,Xiao D,Zhang J.2019. Middle Ordovician multi-stage penecontemporaneous karstification in North China: Implications for reservoir genesis and sea level fluctuations. Journal of Asian Earth Sciences,183: 103969. https://doi.org/10.1016/j.jseaes.2019.103969. [69] Xiong Y,Tan X C,Dong G D,Wang L C,Ji H K,Liu Y,Wen C X.2020. Diagenetic differentiation in the Ordovician Majiagou Formation,Ordos Basin,China: Facies,geochemical and reservoir heterogeneity constraints. Journal of Petroleum Science and Engineering,191: 107179. https://doi.org/10.1016/j.petrol.2020.107179. [70] Xu T F, Sonnenthal E, Spycher N, Pruess K.2006. TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers and Geosciences, 32(2): 145-165. [71] Zhang S,Depaolo D J,Xu T,Zheng L.2013. Mineralization of carbon dioxide sequestered in volcanogenic sandstone reservoir rocks. International Journal of Greenhouse Gas Control, 18: 315-328. [72] Zhang Y F,Tan F,Sun Y B,Pan W Q,Wang Z Y,Yang H Q,Zhao J X.2018. Differences between reservoirs in the intra-platform and platform margin reef-shoal complexes of the Upper Ordovician Lianglitag Formation in the Tazhong oil field,NW China,and corresponding exploration strategies. Marine and Petroleum Geology, 98: 66-78. [73] Zhao Y Y,Zheng Y F.2013. Geochemical constraints on the origin of post-depositional fluids in sedimentary carbonates of the Ediacaran system in South China. Precambrian Research, 224: 341-363.