Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events
Yu Wen-Chao1,2, Du Yuan-Sheng1,2, Zhou Qi2,3, Wang Ping1,2, Qi Liang1,2, Xu Yuan1,2, Jin Song4, Pan Wen2,5, Yuan Liang-Jun2,5, Xie Xiao-Feng2,5, Yang Bing-Nan2,5
1 State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074, China; 2 Innovation Center of Ore Resources Exploration Technology in the Region Bedrock,Ministry of Natural Resources of People's Republic of China,Guiyang 550081, China; 3 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004, China; 4 Post-doctoral Scientific Research Workstation,Hebei Bureau of Geology and Mineral Resources Exploration,Shijiazhuang 050081,China; 5 Geological Brigade 103,Guizhou Bureau of Geology and Mineral Exploration and Development,Guizhou Tongren 554300,China
Abstract The exploration of the Cryogenian manganese deposits in the Datangpo Formation of South China has achieved great progress in recent years. It is concern in the long term there are many studies on this manganese deposits due to its particularity in the temporal and spatial distribution and the mineralization background. In this paper,we systematically summarize the previous achievements on the Datangpo-type manganese deposits. Besides,we also review current findings of Neoproterozoic global geotectonics,palaeoclimate evolution,ancient marine chemistry,and microbial evolution etc. The possible linkage between the massive metallogenesis of the Cryogenian Datangpo manganese deposits in the South China and Neoproterozoic major geological events is established. The break-up of Rodinia supercontinent led to the widespread rift basin systems in the world since the Middle Neoproterozoic. The Nanhua Basin in South China,which is a manganese-forming sedimentary basin,developed from the rift basin. The rift basin provided space for manganese deposits and controlled the distribution of manganese deposit. The hydrothermal activities at the bottom of the basin provided favorable manganese source. During the Neoproterozoic ice period(“Snowball Earth”event),global ice-sheets cut off or hindered exchanges of mass and energy between different spheres of Earth,which may lead to the widespread anoxic condition in the ice age ocean. The palaeoclimate changes during the glacial-interglacial period led to the disappearance of ice-sheets and the triggering of mass and energy exchanges between different sub-systems of Earth,followed by the variation of redox condition of the ancient sea. For the Nanhua Basin,the oxidation of surface water and the oxygen-bearing base flow provided the oxidation environment for the precipitation of manganese. Besides,new evidence indicated that manganese microbiological mineralization was the potential mechanism for manganese deposit under the microbial resuscitation condition during the interglacial period. All these major geological events have complicated connections and they provided essential metallogenic conditions for the sedimentary mineralization of “Datangpo”manganese deposit. It is believed that there is a coupling between the sedimentary metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and Neoproterozoic major geological events.
Fund:Co-funded by the National Natural Science Foundation of China(No. U1812402,41802116),Department of Natural Resources of Guangxi Zhuang Autonomous Region(No.2020-1124),Scientific and Technological Innovation Talents Team of Manganese Resources Prediction and Evaluation in Guizhou Province(Nos.[2018]5618,[2019]5654),Post-doc Station of HBGMRE(No.454-0602-YBN-Z9E4)
Corresponding Authors:
Du Yuan-Sheng,born in 1958,is a professor and Ph.D. supervisor of China University of Geosciences(Wuhan). He is mainly engaged in the researches of sedimentology and geology of orogenic belt. E-mail: duyuansheng126@126.com.
About author: Yu Wen-Chao,born in 1988,is an associate professor of China University of Geosciences(Wuhan). He is mainly engaged in research of sedimentary ore deposits. E-mail: yuwenchaocug@163.com.
Cite this article:
Yu Wen-Chao,Du Yuan-Sheng,Zhou Qi et al. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events[J]. JOPC, 2020, 22(5): 855-871.
Yu Wen-Chao,Du Yuan-Sheng,Zhou Qi et al. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events[J]. JOPC, 2020, 22(5): 855-871.
[1] 储雪蕾,李任伟,张同钢,张启锐. 2001. 大塘坡期锰矿层中黄铁矿异常高的 δ34S 值的意义. 矿物岩石地球化学通报, 20(4): 320-322. [Chu X L,Li R W,Zhang T G,Zhang Q R. 2001. Implication of ultra-high δ34S values of pyrite in manganese mineralization beds of Datangpo Stage. Bulletin of Mineralogy,Petrology and Geochemistry, 20(4): 320-322] [2] 董志国,张连昌,王长乐,张帮禄,彭自栋,朱明田,冯京,谢月桥. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. [Dong Z G,Zhang L C,Wang C L,Zhang B L,Peng Z D,Zhu M T,Feng J,Xie Y Q. 2020. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237-255] [3] 付勇,徐志刚,裴浩翔,江冉. 2014. 中国锰矿成矿规律初探. 地质学报,88(12): 2192-2207. [Fu Y,Xu Z G,Pei H X,Jiang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica,88(12): 2192-2207] [4] 何志威,杨瑞东,高军波,程伟,刘帅,张峰玮. 2014. 贵州松桃道坨锰矿含锰岩系地球化学特征和沉积环境分析. 地质论评, 60(5): 1061-1075. [He Z W,Yang R D,Gao J B,Cheng W,Liu S,Zhang F W. 2014. Geochemical characteristics and sedimentary environment of manganese-bearing rock series of Daotuo,manganese deposit,Songtao County of Guizhou Province. Geological Review, 60(5): 1061-1075] [5] 侯宗林,薛友智,黄金水,林友焕,刘红军,姚敬劬,朱凯军. 1997. 扬子地台周边锰矿. 北京: 冶金工业出版社,1-364. [Hou Z L,Xu Y Z,Huang J S,Lin Y H,Liu H J,Yao J X,Zhu K J. 1997. Manganese Deposits Around the Yangtze Platform. Beijing: Megallurgical Industry Press,1-364] [6] 姜海健,陈强路,杨鑫,储呈林. 2017. 塔里木盆地新元古代裂谷盆地层序样式. 地质学报, 91(3): 588-604. [Jiang H J,Chen Q L,Yang X,Chu C L. 2017. The style of sequence stratigraphy of neoproterozoic rift basin in the Tarim Basin. Acta Geologica Sinica, 91(3): 588-604] [7] 毛景文,杨宗喜,谢桂青,袁顺达,周振华. 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. [Mao J W,Yang Z X,Xie G Q,Yuan S D,Zhou Z H. 2019. Critical minerals: International trends and thinking. Mineral Deposits, 38(4): 689-698] [8] 齐靓,余文超,杜远生,周琦,郭华,王佳武,王萍,徐源. 2015. 黔东南华纪铁丝坳组—大塘坡组古气候的演变: 来自CIA的证据. 地质科技情报, 34(6): 47-57. [Qi L,Yu W C,Du Y S,Zhou Q,Guo H,Wang J W,Wang P,Xu Y. 2015. Paleoclimate evolution of the cryogenian Tiesi'ao Formation-Datangpo Formation in eastern Guizhou Province: Evidence from the chemical Index of alteration. Geological Science and Technology Information, 34(6): 47-57] [9] 王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. [Wang D H. 2019. Study on critical mineral resources: Significance of research,determination oftypes,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation. Acta Geologica Sinica, 93(6): 1189-1209] [10] 王剑,江新胜,卓皆文. 2019. 华南新元古代裂谷盆地演化与岩相古地理. 北京: 科学出版社. [Wang J,Jiang X S,Zhuo J W. 2019. Evolution and Lithofacies Paleogeography of Neoproterozoic Rift Basin in South China. Beijing: Science Press] [11] 王萍,周琦,杜远生,余文超,徐源,齐靓,袁良军. 2016. 黔东松桃地区南华系大塘坡组锰矿中黄铁矿硫同位素特征及其地质意义. 地球科学, 41(12): 2031-2040. [Wang P,Zhou Q,Du Y S,Yu W C,Xu Y,Qi L,Yuan L J. 2016. Characteristics of pyrite sulfur Isotope of Mn deposit from Datangpo Formation in Songtao area,East Guizhou Province and its Geological Significance. Earth Science, 41(12): 2031-2040] [12] 闫斌,朱祥坤,唐索寒,朱茂炎. 2010. 广西新元古代 BIF 的铁同位素特征及其地质意义. 地质学报, 84(7): 1080-1086. [Yan B,Zhu X K,Tang S H,Zhu M Y. 2010. Fe isotopic characteristics of the Neoproterozoic BIF in Guangxi Province and its implication. Acta Geologica Sinica, 84(7): 1080-1086] [13] 翟明国,吴福元,胡瑞忠,蒋少涌,李文昌,王汝成,王登红,齐涛,秦克章,温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. [Zhai M G,Wu F Y,Hu R Z,Jiang S Y,Li W C,Wang R C,Wang D H,Qi T,Qin K Z,Wen H J. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111] [14] 张飞飞,彭乾云,朱祥坤,闫斌,李津,程龙,斯小华. 2013a. 湖北古城锰矿Fe同位素特征及其古环境意义. 地质学报, 87(9): 1411-1418. [Zhang F F,Peng Q Y,Zhu X K,Yan B,Li J,Cheng L,Si X H. 2013a. Fe isotope characteristics of the Gucheng manganese ore deposits in Hubei Province and its Geological implication. Acta Geologica Sinica, 87(9): 1411-1418] [15] 张飞飞,朱祥坤,高兆富,程龙,彭乾云,杨德智. 2013b. 黔东北西溪堡锰矿的沉淀形式与含锰层位中黄铁矿异常高 δ34S 值的成因. 地质论评, 59(2): 274-286. [Zhang F F,Zhu X K,Gao Z F,Cheng L,Peng Q Y,Yang D Z. 2013b. Implication of the precipitation mode of manganese and ultra-high δ34S values of pyrite in Mn-carbonate of Xixibao Mn Ore Deposit in northeastern Guizhou Province. Geological Review, 59(2): 274-286] [16] 赵彦彦,郑永飞. 2011. 全球新元古代冰期的记录和时限. 岩石学报, 27(2): 545-565. [Zhao Y Y,Zheng Y F. 2011. Record and time limit of global Neoproterozoic Glaciation. Acta Petrologica Sinica, 27(2): 545-565] [17] 周琦,杜远生,袁良军,张遂,余文超,杨胜堂,刘雨. 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188. [Zhou Q,Du Y S,Yuan L J,Zhang S,Yu W C,Yang S T,Liu Y. 2016. The Structure of the Wuling Rift Basin and its Control on the Manganese Deposit during the Nanhua Period in Guizhou-Hunan-Chongqing Border Area,South China. Earth Science, 41(2): 177-188] [18] 朱祥坤,彭乾云,张仁彪,安正泽,张飞飞,闫斌,李津,高兆富,覃英,潘文. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征. 地质学报, 87(9): 1335-1348. [Zhu X K,Peng Q Y,Zhang R B,An Z Z,Zhang F F,Yan B,Li J,Gao Z F,Qin Y,Pan W. 2013. Geological and Geochemical Characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao Country in Guizhou Province,South China. Acta Geologica Sinica, 87(9): 1335-1348] [19] Baldwin G J,Turner E C,Kamber B S. 2016. Tectonic controls on distribution and stratigraphy of the Cryogenian Rapitan iron formation,northwestern Canada. Precambrian Research, 278: 303-322. [20] Biondi J C,Lopez M. 2017. Urucum Neoproterozoic-Cambrian manganese deposits(MS,Brazil): Biogenic participation in the ore genesis,geology,geochemistry,and depositional environment. Ore Geology Reviews, 91: 335-386. [21] Biondi J C,Polgári M,Gyollai I,Fintor K,Kovács I,Fekete J,Mojzsis S J. 2020. Biogenesis of the neoproterozoic kremydilite manganese ores from urucum(brazil): A new manganese ore type. Precambrian Research, 340: 105624. [22] Bosak T,Lahr D J G,Pruss S B,Macdonald F A,Dalton L,Matys E. 2011. Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth and Planetary Science Letters, 308(1-2): 29-40. [23] Brocks J J,Jarrett A M,Sirantoine E,Hallmann C,Hoshino Y,Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548: 578. [24] Bühn B,Stanistreet I G,Okrusch M. 1992. Late Proterozoic outer shelf manganese and iron deposits at Otjosondu(Namibia)related to the Damaran oceanic opening. Economic Geology, 87(5): 1393-1411. [25] Burke I T,Kemp A E S. 2002. Microfabric analysis of Mn-carbonate laminae deposition and Mn-sulfide formation in the Gotland Deep,Baltic Sea. Geochimica et Cosmochimica Acta, 66(9): 1589-1600. [26] Butuzova G Y,Drits V A,Morozov A A,Gorschkov A Ⅰ. 2009. Processes of Formation of Iron—Manganese Oxyhydroxides in the Atlantis-II and Thetis Deeps of the Red Sea. In: Y.L. John Parnell,Chen Changming(ed).Sediment-Hosted Mineral Deposits. Blackwell Publishing Ltd.: 57-72. [27] Calvert S E,Pedersen T F. 1996. Sedimentary geochemistry of manganese;implications for the environment of formation of manganiferous black shales. Economic Geology, 91(1): 36-47. [28] Canfield D E,Erik K,Bo T. 2005. The Iron and Manganese Cycles. In: Canfield D E,Kristensen E,Thamdrup B(eds). Advances in Marine Biology. Academic Press,269-312. [29] Chen F,Wang Q F,Yang S,Zhang Q,Liu X,Chen J,Carranza E J. 2018. Space-time distribution of manganese ore deposits along the southern margin of the South China Block,in the context of Palaeo-Tethyan evolution. [30] Chen X,Li D,Ling H F,Jiang S Y. 2008. Carbon and sulfur isotopic compositions of basal Datangpo Formation,northeastern Guizhou,South China: Implications for depositional environment. Progress in Natural Science, 18(4): 421-429. [31] Cheng M,Li C,Chen X,Zhou L,Algeo T J,Ling H F,Feng L J,Jin C S. 2017. Delayed Neoproterozoic oceanic oxygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation. Precambrian Research, 319: 187-197. [32] Condon D,Zhu M Y,Bowring S,Wang W,Yang A H,Jin Y G. 2005. U-Pb ages from the neoproterozoic Doushantuo Formation,China. Science, 308(5718): 95-98. [33] Cox G M,Halverson G P,Stevenson R K,Vokaty M,Poirier A,Kunzmann M,Li Z X,Denyszyn S W,Strauss J V,Macdonald F A. 2016. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. [34] Cui H,Kitajima K,Spicuzza M J,Fournelle J,Denny A,Ishida A,Zhang F F,Valley J. 2018. Questioning the biogenicity of the Neoproterozoic superheavy pyrite by SIMS. American Mineralogist, 103: 1362-1400. [35] de Vries S T,Pryer L L,Fry N. 2008. Evolution of Neoarchaean and Proterozoic basins of Australia. Precambrian Research, 166(1-4): 39-53. [36] Deng X,Li J W,Vasconcelos P. 2016.40Ar/39Ar dating of supergene Mn-oxides from the Zunyi Mn deposit,Guizhou Plateau,SW China: Implications for chemical weathering and paleoclimatic evolution since the late Miocene. Chemical Geology, 445: 185-198. [37] Fan D L,Liu T,Ye J. 1992. The process of formation of manganese carbonate deposits hosted in black shale series. Economic Geology, 87(5): 1419-1429. [38] Fan D L,Yang P. 1999. Introduction to and classification of manganese deposits of China. Ore Geology Reviews, 15(1-3): 1-13. [39] Fan D L,Ye J,Yin L,Zhang R. 1999. Microbial processes in the formation of the Sinian Gaoyan manganese carbonate ore,Sichuan Province,China. Ore Geology Reviews, 15(1-3): 79-93. [40] Feng L J,Chu X L,Huang J,Zhang Q R,Chang H J. 2010. Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18(4): 632-637. [41] Feng L,Huang J,Lu D,Zhang Q. 2016. Major and trace element geochemistry of the Neoproterozoic syn-glacial Fulu iron formation,South China. Geological Magazine, 154(6): 1371-1380. [42] Glasby G P. 1988. Manganese deposition through geological time: Dominance of the post-eocene deep-sea environment. Ore Geology Reviews, 4(1-2): 135-143. [43] Glasby G. 2006. Manganese: Predominant Role of Nodules and Crusts. In: H. Schulz,M. Zabel(eds).Marine Geochemistry. Springer Berlin Heidelberg: 371-427. [44] Glasby G P,Schulz H D. 1999. Eh Ph diagrams for Mn,Fe,Co,Ni,Cu and as under seawater conditions: Application of two new types of eh ph diagrams to the study of specific problems in marine geochemistry. Aquatic geochemistry, 5(3): 227-248. [45] Goddéris Y,Donnadieu Y,Nédélec A,Dupré B,Dessert C,Grard A,Ramstein G,François L M. 2003. The Sturtian‘snowball' glaciation: Fire and ice. Earth and Planetary Science Letters, 211(1-2): 1-12. [46] Granina L,Muller B,Wehrli B. 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chemical Geology, 205(1): 55-72. [47] Greene D C. 2010. Neoproterozoic rifting in the southern Georgina Basin,central Australia: Implications for reconstructing Australia in Rodinia. Tectonics,29(5): TC5010. [48] Grotzinger J P,Knoll A H. 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian?Palaios: 578-596. [49] Gutzmer J,Beukes N J. 1998. The manganese formation of the Neoproterozoic Penganga Group,India;revision of an enigma. Economic Geology, 93(7): 1091-1102. [50] Haas J. 2012. Influence of global,regional,and local factors on the genesis of the Jurassic manganese ore formation in the Transdanubian Range,Hungary. Ore Geology Reviews, 47: 77-86. [51] Hansel C M. 2017. Chapter Two-Manganese in Marine Microbiology. In: Poole R K(ed). Advances in Microbial Physiology. Academic Press,37-83. [52] Harlan S S,Heaman L,LeCheminant A N,Premo W R. 2003. Gunbarrel mafic magmatic event: A key 780Ma time marker for Rodinia plate reconstructions. Geology, 31(12): 1053-1056. [53] Harland W B. 2007. Origins and assessment of snowball Earth hypotheses. Geological Magazine, 144(4): 633-642. [54] Hein J R,Fan D,Ye J,Liu T,Yeh H W. 1999. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores,Shaanxi Province,China. Ore Geology Reviews, 15(1-3): 95-134. [55] Heller C,Kuhn T,Versteegh G J,Wegorzewski A V,Kasten S. 2018. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 142: 16-33. [56] Hermans M,Lenstra W K,van Helmond N A,Behrends T,Egger M,Séguret M J,Gustafsson E,Gustafsson B G,Slomp C P. 2019. Impact of natural re-oxygenation on the sediment dynamics of manganese,iron and phosphorus in a euxinic Baltic Sea basin. Geochimica et Cosmochimica Acta, 246: 174-196. [57] Herndon E M,Havig J R,Singer D M,McCormick M L,Kump L R. 2018. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. [58] Hoffman P F,Kaufman A J,Halverson G P,Schrag D P. 1998. A Neoproterozoic snowball earth. Science, 281(5381): 1342-1346. [59] Hoffman P F. 1999. The break-up of Rodinia,birth of Gondwana,true polar wander and the snowball Earth. Journal of African Earth Sciences, 28(1): 17-33. [60] Hoffman P F,Halverson G P,Domack E W,Husson J M,Higgins J A,Schrag D P. 2007. Are basal Ediacaran(635Ma)post-glacial “cap dolostones”diachronous?Earth and Planetary Science Letters, 258(1): 114-131. [61] Hoffman P F,Macdonald F A,Halverson G P. 2011. Chemical sediments associated with Neoproterozoic glaciation: Iron formation,cap carbonate,barite and phosphorite. Geological Society,London,Memoirs, 36(1): 67-80. [62] Hoffman P F,Abbot D S,Ashkenazy Y,Benn D I,Brocks J J,Cohen P A,Cox G M,Creveling J R,Donnadieu Y,Erwin D H. 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11): e1600983. [63] Hohl S,Jiang S Y,Viehmann S,Wei W,Liu Q,Wei H Z,Galer S. 2020. Trace metal and Cd isotope systematics of the basal Datangpo Formation,Yangtze Platform(South China) indicate restrained(bio) geochemical metal cycling in Cryogenian seawater. Geosciences, 10: 36. [64] Huckriede H,Meischner D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta, 60(8): 1399-1413. [65] Johnson J E,Savalia P,Davis R,Kocar B D,Webb S M,Nealson K H,Fischer W W. 2016a. Real-time manganese phase dynamics during biological and abiotic manganese oxide reduction. Environmental Science & Technology, 50(8): 4248-4258. [66] Johnson J E,Webb S M,Ma C,Fischer W W. 2016b. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochimica et Cosmochimica Acta, 173: 210-231. [67] Kirschvink J L. 1992. Late Proterozoic low-latitude global glaciation: The snowball Earth. In: Schopf J, Klein C(eds). The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: Cambridge University Press,51-52. [68] Krauskopf K B. 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta, 12(1-2): 61-84. [69] Kuleshov V,Maynard B. 2017. Isotope Geochemistry: The Origin and Formation of Manganese Rocks and Ores. Elsevier,Amsterdam: 1-440. [70] Lan Z,Li X H,Zhang Q R,Li Q L. 2015. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group,South China. Precambrian Research, 267: 28-38. [71] Le Ber E,Le Heron D P,Winterleitner G,Bosence D W J,Vining B A,Kamona F. 2013. Microbialite recovery in the aftermath of the Sturtian glaciation: Insights from the Rasthof Formation,Namibia. Sedimentary Geology, 294: 1-12. [72] Le Hir G,Donnadieu Y,Goddéris Y,Pierrehumbert R T,Halverson G P,Macouin M,Nédélec A,Ramstein G. 2009. The snowball Earth aftermath: Exploring the limits of continental weathering processes. Earth and Planetary Science Letters, 277(3): 453-463. [73] Lechte M,Wallace M. 2015. Sedimentary and tectonic history of the Holowilena Ironstone,a Neoproterozoic iron formation in South Australia. Sedimentary Geology, 329: 211-224. [74] Lechte M,Wallace M. 2016. Sub-ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation. Geology, 44(11): 891-894. [75] Li C,Love G D,Lyons T W,Scott C T,Feng L J,Huang J,Chang H J,Zhang Q R,Chu X L. 2012. Evidence for a redox stratified Cryogenian marine basin,Datangpo Formation,South China. Earth and Planetary Science Letters, 331-332: 246-256. [76] Li X H,Li Z X,Wingate M T D,Chung S L,Liu Y,Lin G C,Li W X. 2006. Geochemistry of the 755Ma Mundine Well dyke swarm,northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?Precambrian Research, 146(1): 1-15. [77] Liu C,Wang Z R,Macdonald F A. 2018. Sr and Mg isotope geochemistry of the basal Ediacaran cap limestone sequence of Mongolia: Implications for carbonate diagenesis,mixing of glacial meltwaters,and seawater chemistry in the aftermath of Snowball Earth. Chemical Geology, 491: 1-13. [78] Liu C,Wang Z R,Raub T D,Macdonald F A,Evans D A D. 2014. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume. Earth and Planetary Science Letters, 404: 22-32. [79] Liu T B,Maynard J B,Alten J. 2006. Superheavy S isotopes from glacier-associated sediments of the Neoproterozoic of south China: Oceanic anoxia or sulfate limitation?Memoirs-Geological Society of America, 198: 205. [80] Ma Z X,Liu X T,Yu W C,Du Y S,Du Q D. 2019. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: Insight from the basal Datangpo Formation of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 529: 39-52. [81] Macdonald F A,Wordsworth R. 2017. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophysical Research Letters, 44(4): 1938-1946. [82] Maynard J B. 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology, 105(3): 535-552. [83] Maynard J B. 2014. Manganiferous sediments,rocks,and ores. In: Holland H D,Turekian K K(eds). Treatise of Geochemistry(2nd edition). Oxford: Pergamon,289-308. [84] McClellan E,Gazel E. 2014. The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America. Lithos, 206-207: 321-337. [85] Nédélec A,Affaton P,France L C,Charrière A,Alvaro J. 2007. Sedimentology and chemostratigraphy of the Bwipe Neoproterozoic cap dolostones(Ghana,Volta Basin): A record of microbial activity in a peritidal environment. Comptes Rendus Geoscience, 339(3): 223-239. [86] Nicholson K,Hein J R,Bühn B,Dasgupta S. 1997. Precambrian to modern manganese mineralization: Changes in ore type and depositional environment. Geological Society,London,Special Publications, 119(1): 1-3. [87] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110(1): 26-57. [88] Patranabis-Deb S,Chaudhuri A. 2007. A retreating fan-delta system in Neoproterozoic Chattisgarh rift basin,central India: Major controls on its evolution. AAPG Bulletin, 91: 785-808. [89] Peng X,Zhu X K,Shi F Q,Yan B,Zhang F F,Zhao N N,Peng P A,Li J,Wang D,Shields G A. 2019. A deep marine organic carbon reservoir in the non-glacial Cryogenian ocean(Nanhua Basin,South China)revealed by organic carbon isotopes. Precambrian Research, 321: 212-220. [90] Pierrehumbert R T,Abbot D S,Voigt A,Koll D. 2011. Climate of the Neoproterozoic. Annual Review of Earth & Planetary Sciences, 39(1): 417-460. [91] Polgári M,Bajnóczi B,Kis K V,Götze J,Dobosi G,Tóth M,Vigh T. 2007. Mineralogical and cathodoluminescence characteristics of Ca-rich kutnohorite from the <inline-graphic xlink:href="1671-1505-22-5-855/img_9.jpg"/>rkút Mn-carbonate mineralization,Hungary. Mineralogical Magazine, 71(5): 493-508. [92] Polgári M,Hein J,Tóth A,Pál-Molnár E,Vigh T,Bíró L,Fintor K. 2012a. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years('Urkút,Hungary). Geology, 40(10): 903-906. [93] Polgári M,Hein J,Vigh T,Szabó-Drubina M,Fórizs I,Bíró L,Müller A,Tóth A. 2012b. Microbial processes and the origin of the 'Urkút manganese deposit,Hungary. Ore Geology Reviews, 47: 87-109. [94] Polgári M,Hein J,Németh T,Pál-Molnár E,Vigh T. 2013. Celadonite and smectite formation in the <inline-graphic xlink:href="1671-1505-22-5-855/img_12.jpg"/>rkút Mn-carbonate ore deposit(Hungary). Sedimentary Geology, 294: 157-163. [95] Polgári M,Hein J R,Bíró L,Gyollai I,Németh T,Sajgó C,Fekete J,Schwark L,Pál-Molnár E,Hámor-Vidó M,Vigh T. 2016a. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites('Urkút,Hungary). Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 99-120. [96] Polgári M,Németh T,Pál-Molnár E,Futó I,Vigh T,Mojzsis S J. 2016b. Correlated chemostratigraphy of Mn-carbonate microbialites(<inline-graphic xlink:href="1671-1505-22-5-855/img_14.jpg"/>rkút,Hungary). Gondwana Research, 29(1): 278-289. [97] Polgári M,Gyollai I,Fintor K,Horváth H,Elemér P M,Biondi J C. 2019. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Frontiers in Microbiology, 10: 2731. [98] Pruss S B,Bosak T,Macdonald F A,McLane M,Hoffman P F. 2010. Microbial facies in a Sturtian cap carbonate,the Rasthof Formation,Otavi Group,northern Namibia. Precambrian Research, 181(1-4): 187-198. [99] Rajabzadeh M A,Haddad F,Polgári M,Fintor K,Walter H,Molnár Z,Gyollai I. 2017. Investigation on the role of microorganisms in manganese mineralization from Abadeh-Tashk area,Fars Province,southwestern Iran by using petrographic and geochemical data. Ore Geology Reviews, 80: 229-249. [100] Rooney A D,Strauss J V,Brandon A D,Macdonald F A. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, 43(5): 459-462 [101] Rooney A D,Yang C,Condon D J,Zhu M,Macdonald F A. 2020. U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian snowball Earth aftermath. Geology, 48(6): 625-629. [102] Roy S. 1988. Manganese metallogenesis: A review. Ore Geology Reviews, 4(1-2): 155-170. [103] Roy S. 1992. Environments and processes of manganese deposition. Economic Geology, 87(5): 1218-1236. [104] Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews, 77(4): 273-305. [105] Schöbel S,Sharma K K,Hörbrand T,Böhm T,Donhauser I,de Wall H. 2017. Continental rift-setting and evolution of Neoproterozoic Sindreth Basin in NW-India. Journal of Earth System Science, 126(6): 90. [106] Scholz F. 2018. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth-Science Reviews, 184: 29-45. [107] Schrag D P,Berner R A,Hoffman P F,Halverson G P. 2002. On the initiation of a snowball Earth. Geochemistry Geophysics Geosystems, 3(6): 1-21. [108] Scotese C R. 2009. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents,Rodinia and Pannotia. Geological Society,London,Special Publications, 326(1): 67-83. [109] Sim N,Orians K J. 2019. Annual variability of dissolved manganese in Northeast Pacific along Line-P: 2010-2013. Marine Chemistry, 216: 103702. [110] Spence G H,Heron D P L,Fairchild I J. 2016. Sedimentological perspectives on climatic,atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63(2): 253-306. [111] Sternbeck J,Sohlenius G. 1997. Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chemical Geology, 135(1-2): 55-73. [112] Thamdrup B,Rosselló-Mora R,Amann R. 2000. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments. Applied and Environmental Microbiology, 66(7): 2888-2897. [113] Torres M E,Hong W L,Solomon E A,Milliken K,Kim J H,Sample J C,Teichert B M A,Wallmann K. 2020. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth-Science Reviews, 200: 102960. [114] Wang D,Zhu X K,Zhao N N,Yan B,Li X H,Shi F Q,Zhang F F. 2019. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China. Journal of Asian Earth Sciences, 177: 287-294. [115] Wang J,Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1-4): 141-158. [116] Wang P,Algeo T J,Zhou Q,Yu W C,Du Y S,Qin Y J,Xu Y,Yuan L J,Pan W. 2019. Large accumulations of 34S-enriched pyrite in a low-sulfate marine basin: The Sturtian Nanhua Basin,South China. Precambrian Research, 335: 105504. [117] Wang P,Du Y S,Yu W C,Algeo T J,Zhou Q,Xu Y,Qi L,Yuan L J,Pan W. 2020. The chemical index of alteration(CIA)as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Reviews, 201: 103032. [118] Wang T G,Li M J,Wang C J,Wang G L,Zhang W B,Shi Q,Zhu L. 2008. Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region,southern China. Precambrian Research, 162(3): 317-326. [119] Wei G Y,Wei W,Wang D,Li T,Yang X P,Shields G A,Zhang F F,Li G J,Chen T Y,Yang T,Ling H F. 2020. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth and Planetary Science Letters, 539: 116244. [120] Wei W,Wang D,Li D,Ling H F,Chen X,Wei G Y,Zhang F F,Zhu X K,Yan B. 2016. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation,northeastern Guizhou,South China. Journal of Earth Science, 27(2): 233-241. [121] Wu C Q,Zhang Z W,Xiao J F,Fu Y Z,Shao S X,Zheng C F,Yao J H,Xiao C Y. 2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform,China: Constraints from geological and geochemical evidence. Ore Geology Reviews, 75: 76-99. [122] Wu L,Guan S W,Zhang S C,Yang H J,Jin J Q,Zhang X D,Zhang C Y. 2018. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution. Journal of Asian Earth Sciences, 158: 240-252. [123] Xu L G,Frank A B,Lehmann B,Zhu J M,Mao J W,Ju Y Z,Frei R. 2019. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Scientific Reports, 9(1): 15056. [124] Yang J,Jansen M F,Macdonald F A,Abbot D S. 2017. Persistence of a freshwater surface ocean after a snowball Earth. Geology, 45(7): 615-618. [125] Ye Y T,Wang H J,Zhai L N,Wang X M,Wu C D,Zhang S C. 2018. Contrasting Mo-U enrichments of the basal Datangpo Formation in South China: Implications for the Cryogenian interglacial ocean redox. Precambrian Research, 315: 66-74. [126] Yin L M. 1990. Microbiota from Middle and Late Proterozoic Iron and Manganese Ore Deposits in China. In: Parnell J,Ye L J,Changming C(eds). Sediment-Hosted Mineral Deposits,Special Publications of International Association of Sedimentologists. Beijing:Blackwell Publishing Ltd.,109-117. [127] Yu W C,Algeo T J,Du Y S,Maynard B,Guo H,Zhou Q,Peng T P,Wang P,Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 321-337. [128] Yu W C,Algeo, T J,Du Y S,Zhou Q,Wang P,Xu Y,Yuan L J,Pan W. 2017. Newly discovered Sturtian cap carbonate in the Nanhua Basin,South China. Precambrian Research, 293: 112-130. [129] Yu W C,Polgari M,Gyollai I,Fintor K,Szabo M,Kovacs I,Fekete J,Du Y S,Zhou Q. 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122-135. [130] Zhang F F,Zhu X K,Yan B,Kendall B,Peng X,Li J,Algeo T J,Romaniello S. 2015. Oxygenation of a Cryogenian ocean(Nanhua Basin,South China)revealed by pyrite Fe isotope compositions. Earth and Planetary Science Letters, 429: 11-19. [131] Zhao J H,Zhang S B,Wang X L. 2018. Neoproterozoic geology and reconstruction of South China. Precambrian Research, 309: 1-5. [132] Zhou C M,Huyskens M H,Lang X G,Xiao S H,Yin Q Z. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47: 251-254. [133] Zhu G Y,Li T T,Zhao K,Zhang Z Y,Chen W Y,Yan H H,Zhang K J,Chi L X. 2019. Excellent source rocks discovered in the Cryogenian interglacial deposits in South China: Geology,geochemistry,and hydrocarbon potential. Precambrian Research, 333: 105455.