Geochemical characteristics of the Sinian Yangshui Formation and their implications for palaeoceanographic environments in central Guizhou Province
Wang Ze-Peng1,5, Wu Wen-Ming1,5, Liu Jian-Zhong2,5, Du Yuan-Sheng3,5, Zhang Ya-Guan4,5, Fu Yong6, Chen Guo-Yong2, Li Lei1, Tan Dai-Wei1, Wang Da-Fu1, Pan Qi-Quan1, Wang Xiao-Yong1, Huang Yi1, Wan Da-Xue1
1 Geological Brigade 105,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550018,China; 2 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China; 3 State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences, China University of Geosciences(Wuhan),Wuhan 430074,China; 4 School of Earth Resources,China University of Geosciences(Wuhan),Wuhan 430074,China; 5 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock, Ministry of Natural Resources of People’s Republic of China,Guiyang 550081,China; 6 College of Resource and Environmental Engineering,Guizhou University,Guiyang 550025,China
Abstract To reconstruct the palaeoceanographic environments during the Ediacaran Doushantuo period,this study focused on the phosphatic sequences of the Xiaohe(XH)and Xifeng(XF)phosphorite orefield to reveal the interaction between deposition of phosphorites and their sedimentary environments,by means of identification of rock and minerals,SEM,trace and rare earth elements analyses on phosphatic samples. Research results show that deposition of phosphorite was controlled by palaeo-morphology of shallow shoals around the Qianzhong Oldland. The ratio of Sr/Ba in phosphatic samples in Yangshui Formation is commonly larger than 1,and the average value is 1.90(XH)and 0.95(XF),respectively. The Sr/Ba ratio of samples in the Chenjiang Formation is less than 1 with average values of 0.11(XH)and 0.18(XF). The different results of the Sr/Ba ratio suggest transformation from lacustrine environments in the Chengjiang period to marine environments. The ratios of V/Cr and Ni/Co in phosphatic deposits in the Xiaohe Yansgshui Formation are 1.77 and 2.17,respectively,and 1.26 and 2.83 in the Xifeng section,collectively indicating suboxic to oxic environments. The values of δCe in the Xifeng phosphorites are limited between 0.75 and 0.95 with a mean value of 0.85,and those in the Xiaohe phosphorites are 0.74 to 1.09(mean value of 0.88). Increase of negative Ce anomalies from the bottom to the top of the Yangshui Formation shows that sedimentary environments transferred from suboxic to oxic. The change of paleo-ocean geochemical values suggests the increase of the ocean productivity in coastal environments,stimulating deposition of biological action induced phosphorite,and the life evolution also changed the oxygen content and distribution in ocean. Therefore,the transformation of phosphogenesis environments is a positive response to the Neoproterozoic Oxygenation Event and life evolution.
Fund:National Natural Science Foundation of China(No.U1812405),the Second Batch of Integrated Exploration Projects of Guizhou Province and the Third Batch of National Integrated Exploration Projects of China Geological Survey(No.12120114016501)and(No.0747-1661SITCN131),the Geological Scientific Research Projects of Guizhou Geology and Mineral Exploration and Development Bureau(Guizhou Geology and Mineral Exploration Development[2016]No.10 and No.11)
Corresponding Authors:
Du Yuan-Sheng,born in 1958,is a professor and Ph.D. supervisor of China University of Geosciences(Wuhan). He is mainly engaged in sedimentary geology and sedimentary minerals. E-mail: duyuansheng126@126.com.
About author: Wang Ze-Peng,born in 1983,obtained his Ph.D. degree from Institute of Geochemistry,Chinese Academy of Sciences in 2013. Now he is a senior engineer,and is mainly engaged in geochemistry. E-mail: wangzepengyu@126.com.
Cite this article:
Wang Ze-Peng,Wu Wen-Ming,Liu Jian-Zhong et al. Geochemical characteristics of the Sinian Yangshui Formation and their implications for palaeoceanographic environments in central Guizhou Province[J]. JOPC, 2021, 23(3): 610-624.
Wang Ze-Peng,Wu Wen-Ming,Liu Jian-Zhong et al. Geochemical characteristics of the Sinian Yangshui Formation and their implications for palaeoceanographic environments in central Guizhou Province[J]. JOPC, 2021, 23(3): 610-624.
[1] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 22-30. [Chen G Y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H.2015. Spatial and temporal variation and mineralization model of the Sinian phosphorus-bearing sequences in central Guizhou Province. Geological Science and Technology Information, 34(6): 22-30] [2] 郭庆军,杨卫东,刘丛强,Harald S,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 202-208. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L.2003. Sedimentary geochemistry research on the radiation of Weng’an Biota and the formation of the phosphorite ore deposit,Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 22(3): 202-208] [3] 纪秋梅,吕苗,张俊明,胡春林,朱茂炎. 2019. 埃迪卡拉纪全球成磷事件沉积地球化学模型探讨: 以扬子板块不同相区陡山沱组含磷岩层研究为实例. 高校地质学报, 25(1): 68-80. [Ji Q M,Lü M,Zhang J M,Hu C L,Zhu M Y.2019. Explore the model of sedimentary geochemistry of the Ediacaran Phosphogenic Even: a case study of the Doushantuo Phosphorite from different facies of the Yangtze Platform. Geological Journal of China Universities, 25(1): 68-80] [4] 季少聪. 2019. 下刚果盆地Madingo组含磷泥岩元素地球化学特征及其古海洋环境指示. 中国地质大学(武汉)硕士论文. [Ji S C.2019. Element geochemistry of the phosphorus mudstone in Madingo Formation,Lower Congo Basin: implications for paleoceanic environment. Masteral dissertation of China University of Geosciences(Wuhan)] [5] 廖善友. 1999. 贵州息烽磷矿的聚磷环境与富集机制. 贵州师范大学学报: 自然科学版, 17(3): 59-63. [Liao S Y.1999. The environment and the mechanism of phosphorus assembly in Xifeng County. Journal of Guizhou Normal University(Natural Science), 17(3): 59-63] [6] 刘英俊,曹励明. 1987. 元素地球化学导论. 北京: 地质出版社: 1-281. [Liu Y J,Cao L M.1987. Introduction to elemental geochemistry. Beijing: Geological Publishing House] [7] 罗迪柯. 2011. 湖北荆襄磷矿地球化学特征及其矿床成因研究. 中国地质大学(北京)硕士论文. [Luo D K.2011. Research on geochemistry characteristics and cause of formation of Jingxiang phosphorus deposit in Hubei,China. Masteral dissertation of China University of Geosciences of (Beijing)] [8] 密文天,李德亮,冯志强,武新春,牛显. 2013. 贵州瓮安陡山沱组磷块岩的地球化学特征. 地质找矿论丛, 28(1): 101-105. [Mi W T,Li D L,Feng Z Q,Wu X C,Niu X.2013. Research on the geochemical characteristics of phosphorites of Doushantuo Formation in Weng’an county,Guizhou. Contributions to Geology and Mineral Resources Research, 28(1): 101-105] [9] McArthur,杨开济. 1984. 秘鲁滨外磷块岩: 生成年龄及成因的重新评价. 地质地球化学,12(6): 14-16. [McArthur,Yang K J.1984. Offshore phosphorites in Peru: a reevaluation of their age and genesis. Geology and Geochemistry,12(6): 14-16] [10] 汪正江,王剑,卓皆文,杨平,刘家洪,谢尚克. 2011. 扬子陆块震旦纪—寒武纪之交的地壳伸展作用: 来自沉积序列与沉积地球化学证据. 地质论评, 57(5): 731-742. [Wang Z J,Wang J,Zhuo J W,Yang P,Liu J H,Xie S K.2011. Crust extensional activity during the transition from Sinian(Ediacaran)to Cambrian in Yangtze Block: Evidences from the depositional sequence and its geochemical data. Geological Review, 57(5): 731-742] [11] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W.2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China,31(11): 1739-1749] [12] 王泽鹏,张亚冠,杜远生,陈国勇,刘建中,徐园园,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳磷矿沉积区震旦纪陡山沱期定量岩相古地理重建. 古地理学报, 18(3): 399-410. [Wang Z P,Zhang Y G,Du Y S,Chen G Y,Liu J Z,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M.2016. Reconstruction of quantitative lithofacies palaeogeography of the Sinian Doushantuo Age of phosphorite depositional zone in Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(3): 399-410] [13] 吴凯,马东升,潘家永,聂文明,周健,夏菲,刘莉. 2006. 贵州瓮安磷矿陡山沱组地层元素地球化学特征. 东华理工学院学报, 29(2): 108-114. [Wu K,Ma D S,Pan J Y,Nie W M,Zhou J,Xia F,Liu L.2006. The geochemistry of phosphorite of Doushantuo Formation in Weng’an,China: insights from trace elements and REE. Journal of East China Institute of Technology, 29(2): 108-114] [14] 吴文明,杨瑞东,徐世林,任海利,刘建中,王泽鹏,王大福,谭代卫,李磊. 2017. 贵州开阳陡山沱组超大型磷矿的富磷因素分析. 化工矿物与加工,(7): 33-37. [Wu W M,Yang R D,Xu S L,Reng H L,Liu J Z,Wang Z P,Wang D F,Tan D W,Li L.2017. Analysis of enrichment factors for super-large phosphate deposit in Doushantuo Formation in Kaiyang,Guizhou. Industrial Minerals & Processing,(7): 33-37] [15] 解启来,陈多福,漆亮,陈先沛. 2003a. 贵州瓮安陡山沱组磷块岩的稀土元素地球化学特征与沉积古环境. 矿物学报, 23(4): 289-295. [Xie Q L,Chen D F,Qi L,Chen X P.2003a. REE geochemistry of Doushantuo phosphorites and paleoenvironmental changes in Weng’an Area,South China. Acta Mineralogica Sinica, 23(4): 289-295] [16] 解启来,陈多福,漆亮,陈先沛. 2003b. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化. 沉积学报, 21(4): 627-633. [Xie Q L,Chen D F,Qi L,Chen X P.2003b. REEs geochemistry of Doushantuo phosphorites and modification during post sedimentary stages in Weng’an Area,South China. Acta Sedimentologica Sinica, 21(4): 627-633] [17] 徐林刚,Lehmann B,张锡贵,郑伟,孟庆田. 2014. 云南昆阳磷矿黑色页岩微量元素特征及其地质意义. 岩石学报, 30(6): 1817-1827. [Xu L G,Lehmann B,Zhang X G,Zheng W, Meng Q T.2014. Trace element distribution in black shales from the Kunyang phosphorite deposit and its geological significances. Acta Petrologica Sinica, 30(6): 1817-1827] [18] 殷科华,金华英,叶德书,朱成林. 2007. 福泉磨坊晚震旦世磷块岩矿床地质特征及沉积环境. 化工矿产地质, 29(4): 215-221. [Yin K H, Jin H Y, Ye D S,Zhu C L.2007. Geologic feature and sedimentary environment of Upper Sinian Mofang phosphorite deposit in Fuquan. Geology of Chemical Minerals, 29(4): 215-221] [19] 曾允孚,杨卫东. 1988. 黔中陡山沱组磷块岩成因的系统研究. 矿物岩石, (1): 122. [Zeng Y F,Yang W D.1988. A systematic study on the genesis of phosphorite in Doushantuo Formation of central Guizhou Province.Mineralogy and Petrology, (1): 122] [20] 张亚冠. 2019. 黔中地区震旦纪陡山沱组磷矿沉积地质与大规模成矿作用. 中国地质大学(武汉)博士学位论文. [Zhang Y G.2019. Sedimentary geology of the phosphorite deposits and phosphogenic event from Ediacaran Doushantuo Formation in Central Guizhou Provinve. Docteral desseration of China University of Geosciences(Wuhan)] [21] 张亚冠,杜远生,陈国勇,刘建中,王泽鹏,徐圆圆,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳地区震旦纪陡山沱期富磷矿沉积特征与成矿模式. 古地理学报, 18(4): 581-594. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Wang Z P,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M.2016. Sedimentary characteristics and mineralization model of high-grade phosphorite in the Sinian Doushantuo Age of Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(4): 581-594] [22] 张亚冠,杜远生,陈国勇,刘建中,陈庆刚,赵征,王泽鹏,邓超. 2019. 富磷矿三阶段动态成矿模式_黔中开阳式高品位磷矿成矿机制. 古地理学报, 21(2): 351-368. [Zhang Y G,Du Y S,Chen G Y,Liu J Z, Chen Q G,Zhao Z,Wang Z P,Deng C.2019. Three stages dynamic mineralization model of the phosphate-rich deposits: mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 21(2): 351-368] [23] 郑文忠. 1992. 鄂西兴神保磷矿含磷岩系沉积环境分析. 化工地质,14(4): 8-16. [Zheng W Z.1992. Analysis of sedimentary environment of phosphate in Xingshenbao Phosphate mine in Western Hubei. Geology of Chemical Minerals,14(4): 8-16] [24] 郑文忠. 1994. 兴神磷矿含磷岩系地球化学特征与沉积环境分析. 化工地质, 16(2): 80-85. [Zheng W Z,Dong Y,Mai X.1994. Analyze on Geochemical Character and Sedimentary Enviroment for P-bearing Rork series in Xingshen Phosphate Deposit. Geology of Chemical Minerals, 16(2): 80-85] [25] 周琦,杜远生,覃英. 2013. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式: 以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例. 矿床地质, 32(3): 3-12. [Zhou Q,Du Y S,Qin Y.2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: a case study of Datangpo type’manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area. Mineral Deposits, 32(3): 3-12] [26] 周琦,杜远生,王家生,彭加强. 2007. 黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义. 地球科学: 中国地质大学学报, 32(3): 339-346. [Zhou Q,Du Y S,Wang J S,Peng J Q.2007. Characteristics and significance of the cold seep carbonates from the Datangpo Formation of the Nanhua Series in the Northeast Guizhou. Earth Science: Journal of China University of Geosciences, 32(3): 339-346] [27] Algabri M,She Z,Jiao L,Papineau D,Wang G,Zhang C,Tang D,Ouyang G,Zhang Y,Chen G,Li C.2020. Apatite-glaucony association in the Ediacaran Doushantuo Formation,South China and implications for marine redox conditions. Precambrian Research, 347. [28] Canfield D E,Poulton S W,Narbonne G M.2007. Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808): 92-95. [29] Chen D F,Dong W Q,Qi L,Chen G Q,Chen X P.2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology, 201(1): 103-118. [30] Föllmi K B.1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40(1-2): 55-124. [31] Filippelli G M.2011. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere, 84(6): 759-766. [32] Gao Y,Zhang X,Zhang G,Chen K,Shen Y.2018. Ediacaran negative C-isotopic excursions associated with phosphogenic events: evidence from South China. Precambrian Research, 307: 218-228. [33] Haley B A,Klinkhammer G P,Mcmanus J.2004. Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6): 1265-1279. [34] Holland H D.2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci.,361(1470): 903-915. [35] Jarvis I,Burnett I,Nathan Y,Almbaydin F,Attia I,Castro L,Flicoteaux R M H,Husain V,Qutawnah A,Serjani.1994. Phosphorite geochemistry-state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae, 87(3): 643-700. [36] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H.2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551 Ma)in South China. Gondwana Research, 19(4): 831-849. [37] Kidder D L,Eddy C A.1994. Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems. Journal of Sedimentary Research-Section A(United States),64(3): 584-592. [38] Li C,Cheng M,Zhu M,Lyons T W.2018. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution. Emerging Topics in Life Sciences, 2(2): 279-288. [39] Li X H,Li Z X,Ge W,Zhou H,Wingate M T D.2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?Precambrian Research, 122(1-4): 45-83. [40] Mcarthur J M,Walsh J N.1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191-220. [41] Och L M,Shields-Zhou G A.2012. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Science Reviews, 110(1-4): 26-57. [42] Pufahl P K,Groat L A.2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Economic Geology, 112(3): 483-516. [43] Sahoo S K,Planavsky N J,Kendall B,Wang X,Shi X,Scott C,Anbar A D,Lyons T W,Jiang G.2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489(7417): 546-549. [44] She Z,Strother P,Mcmahon G,Nittler L R,Wang J,Zhang J,Sang L,Ma C,Papineau D.2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅰ: in situ micro-analysis of textures and composition. Precambrian Research, 235: 20-35. [45] She Z B,Strother P,Papineau D.2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: microbial diversity and C isotopes. Precambrian Research, 251(3): 62-79. [46] Shields-Zhou G,Och L.2011. The case for a neoproterozoic oxygenation event: geochemical evidence and biological consequences. Gsa Today, 12(3): 4-11. [47] Shields G,Kimura H,Yang J,Gammon P.2004. Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: new francolite-bound sulphate δ34S data and a critical appraisal of the existing record. Chemical Geology, 204: 163-182. [48] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48. [49] Turekian K K,Katz A,Chan L.1973. Trace element trapping in pteropod tests. Limnology & Oceanography, 2(18): 240-249. [50] Wang D,Ling H F,Struck U,Zhu X K,Zhu M.2018. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 9(2575): 1-8. [51] Yamamoto S.1986. Correlation between iron and magnesium and its significance on the distribution of heavy metals in deep-sea cherts. Sedimentary Geology, 49(3): 261-280. [52] Yang H,Xiao J,Xia Y,Xie Z,Tan Q,Xu J,Guo H,He S,Wu S.2019. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin,SW China. Journal of Asian Earth Sciences, 182: 103931. [53] Zhang Y,Pufahl P K,Du Y,Chen G,Wenchao Y.2019. Economic phosphorite from the Ediacaran Doushantuo Formation,South China,and the Neoproterozoic-Cambrian phosphogenic event. Sedimentary Geology, 388: 1-19. [54] Zhao J H,Zhou M F,Yan D P,Zheng J P,Li J W.2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, 39(4): 299-302.