Distribution,characteristics and significances of burnt rocks in northern China
Shi Zhi-Qiang1, Wang Mei-Ling1, Chen Bin2
1 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 2 School of Geography and Environment,Liaocheng University,Shandong Liaocheng 252000,China
Abstract Burnt rocks are widely distributed in many sedimentary basins located in the northern China that are bounded by Kunlun mountain-Qinling-Dabie mountain. However,few studies have focused on the origin,age and geological significance of these kinds of metamorphic rocks. Based on our field investigation,four distribution modes of the burnt rocks are found: (1)large area distribution,(2)linear distribution along the mountain range alignment,(3)distribution along the river incised-valley and(4)covered by the Quaternary loess. These burnt rocks were mainly caused by the self-ignition of Jurassic and Carboniferous-Permian coals. Various burnt rocks developed in the burnt rock area on different levels. The vitrified structure,whitened structure,lava structure,residual structure,pore structure,columnar jointing structure,breccia structure,fissure structure and filling minerals are often found in these burnt rocks. The burnt rocks are mainly red,mixed with brown,black and steel-gray colors. The typical high temperature minerals as cristobalite,tridymite,cordierite,sekaninaite and mullite are common in these burnt rocks. The active tectonic movements and arid climate in northwestern China triggered the formation of burnt rocks since the Miocene. The relationship between the palaeotectonic,palaeoclimate,palaeo-wildfire and the coal self-ignition,however,has been seldomly studied. Such information implied from the formation of burnt rocks should be paid more attention in the future work.
Fund:National Key Basic Research and Development Program of China(973 Program)(No.2015CB453001)
About author: Shi Zhi-Qiang,born in 1972,is a professor of Institute of Sedimentary Geology,Chengdu University of Technology. E-mail: szqcdut@163.com.
Cite this article:
Shi Zhi-Qiang,Wang Mei-Ling,Chen Bin. Distribution,characteristics and significances of burnt rocks in northern China[J]. JOPC, 2021, 23(6): 1067-1081.
Shi Zhi-Qiang,Wang Mei-Ling,Chen Bin. Distribution,characteristics and significances of burnt rocks in northern China[J]. JOPC, 2021, 23(6): 1067-1081.
[1] 安芷生,吴国雄,李建平,孙有斌,刘屹岷,周卫健,蔡演军. 2015. 全球季风动力学与气候变化. 地球环境学报, 6(6): 341-381. [An Z S,Wu G X,Li J P,Sun Y B,Liu Y M,Zhou W J,Cai Y J.2015. Global monsoon dynamics and climate change. Journal of Earth Environment, 6(6): 341-381] [2] 曹博,陶亚彬,韩勇,张子光,白文政,刘志龙. 2020. 烧变岩侵蚀条件下倾斜煤层露天矿分区境界优化. 煤炭科学技术, 48(6): 228-235. [Cao B,Tao Y B,Han Y,Zhang Z G,Bai W Z,Liu Z L.2020. Division boundary optimization of inclined coal seam in open-pit mine under eroded burnt rock. Coal Science and Technology, 48(6): 228-235] [3] 陈彬. 2021. 中国西北地区侏罗系中烧变岩的特征、形成时代及地质意义. 成都理工大学博士论文: 1-82. [Chen B.2021. Characteristics,ages and geological significance of the Jurassic combustion metamorphic rocks in northwestern China. Doctoral dissertation of Chengdu University of Technology: 1-82] [4] 陈凯,王文科,商跃瀚,王化兵,马文清,郝晨亮. 2020. 生态脆弱矿区烧变岩研究现状及展望. 中国矿业, 29(3): 171-176. [Chen K,Wang W K,Shang Y H,Wang H B,Ma W Q,Hao C L.2020. Study status and outlook on burnt rock in the ecologically vulnerable coal-mining areas. China Mining Magazine, 29(3): 171-176] [5] 方小敏,徐先海,宋春晖,韩文霞,孟庆泉,鸟居雅之. 2007. 临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因. 第四纪研究, 27(6): 989-1000. [Fang X M,Xu X H,Song C H,Han W X,Meng Q Q,Niao J Y Z.2007. High resolution rock magnetic records of Cenozoic sediments in the Linxia Basin and their implications on drying of asian inland. Quaternary Sciences, 27(6): 989-1000] [6] 方小敏,吴福莉,韩文霞. 2008. 上新世—第四纪亚洲内陆干旱化过程:柴达木中部鸭湖剖面孢粉和盐类化学指标证据. 第四纪研究, 28(5): 874-882. [Fang X M,Wu F L,Han W X.2008. Plio-Pleisto cene drying process of asian inland:sporopollen and salinity records from Yahu section in the central Qaidam Basin. Quaternary Sciences, 28(5): 874-882] [7] 管海晏,Wagoner Ganderen J L,谭永杰,康高峰,万余庆. 1998. 中国北方煤田自燃环境调查与研究. 北京: 煤炭工业出版社,15-22. [Guan H Y,Wagoner Ganderen J L,Tan Y J,Kang G F,Wan Y Q. 1998. Investigation and Study on Self-ignition Environment of the Coal Fields in North China. Beijing: China Coal Industry Publishing House,15-22] [8] 韩德馨,孙俊民. 1998. 中国煤的燃烧变质作用与煤层自燃特征. 中国煤田地质, 10(4): 15-16,56. [Han D X,Sun J M.1998. Combustion metamorphism and self-igniton characteristics of coal beds in China. Coal Geology of China, 10(4): 15-16,56] [9] 贺卫中. 2002. 神府矿区活鸡兔矿井烧变岩水害防治工程研究. 中国煤田地质, 14(2): 43-44. [He W Z.2002. Study on engineering of prevention and cure on groundwater inundation of burnt rock in huojitu of mine Shenfu mining area. Coal Geology of China, 14(2): 43-44] [10] 侯恩科,童仁剑,冯洁,车晓阳. 2017. 烧变岩富水特征与采动水量损失预计. 煤炭学报, 42(1): 175-182. [Hou E K,Tong R J,Feng J,Che X Y.2017. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining. Journal of China Coal Society, 42(1): 175-182] [11] 黄雷. 2008. 鄂尔多斯盆地北部延安组烧变岩特征及其形成环境. 西北大学硕士毕业论文: 1-56. [Huang L.2008. Characters and forming conditions of burnt rocks in Yan’an Formation of northern Ordos Basin. Masteral dissertation of Northwest University: 1-56] [12] 黄雷,刘池洋. 2014. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征. 地质学报, 88(9): 1753-1761. [Huang L,Liu C Y.2014. Products of combustion of the Yan’an Formation coal seam and their characteristics in the northeastern Ordos Basin. Acta Geologica Sinica, 88(9): 1753-1761] [13] 李明星. 2018. 塔里木盆地北缘侏罗系烧变岩富水性精细探测. 煤矿开采, 23(5): 15-17. [Li M X.2018. Exquisite exploration of Jurassic burnt rock water abundance of northern part of Tarim Basin. Coal Mining Technology, 23(5): 15-17] [14] 穆燕,秦小光,刘嘉麒,殷志强. 2011. 黑碳的研究历史与现状. 海洋地质与第四纪地质, 31(1): 143-155. [Mu Y,Qin X G,Liu J Q,Yin Z Q.2011. A review of black carbon study: history and current status. Marine Geology & Quaternary Geology, 31(1): 143-155] [15] 刘长龄. 1988. 论烧变矿床与烧变岩研究及其意义. 地质找矿论丛,(3): 54-61. [Liu C L.1988. On study of burnt deposits and burnt rocks and their significance. Contributions to Geology and Mineral Resources Research,(3): 54-61] [16] 刘晓东,李力,安芷生. 2001. 青藏高原隆升与欧亚内陆及北非的干旱化. 第四纪研究, 21(2): 114-122. [Liu X D,Li L,An Z S.2001. Tibetan plateau uplift and drying in eurasian interior and northern arfica.Global monsoon dynamics and climate change. Quaternary Sciences, 21(2): 114-122] [17] 刘志坚. 1959. 论烧变岩的特征、成因及地下火燃烧的规律性. 地质论评, 19(5): 209-212. [Liu Z J.1959. Characteristics,formation causes of burnt rocks and regularity of underground fires. Geological Review, 19(5): 209-212] [18] 单金榜. 1986. 火烧山地区含油气特征与油藏类型. 新疆石油地质, 7(4): 17-24. [Shan J B.1986. Characteristics of petroleum possibility and types of oil reservoirs in Huoshaoshan area,northwestern China. Xinjiang Petroleum Geology, 7(4): 17-24] [19] 施雅风,李吉均,李廷栋. 1999. 青藏高原形成演化与发展. 兰州: 中国科学院寒区旱区环境与工程研究所,1-25. [Shi Y F,Li J J,Li T D.1999. Formation,Evolution and Developmentof Tibetan Plateau. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,1-25] [20] 时潜,陈彬. 2017. 中国北方煤层自燃产物—烧变岩的研究意义. 科技创新导报, 14(32): 58-60. [Shi Q,Chen B.2017. Research significances of the production of coal self-ignition(burnt rocks)in North China. Science and Technology Innovation Herald, 14(32): 58-60] [21] 时志强,杨小康,王艳艳,杜怡星,肖凯,段雄. 2016. 含煤盆地表生热液铀成矿理论及证据: 以伊犁盆地南缘及鄂尔多斯盆地东北部侏罗系为例. 成都理工大学学报(自然科学版), 43(6): 703-718. [Shi Z Q,Yang X K,Wang Y Y,Du Y X,Xiao K,Duan X.2016. Theory of uranium mineralization caused by supergene hydrothermal fluid in coal-bearing basins: evidences from Jurassic sandstone in southern Yili Basin and northestern Ordos Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 43(6): 703-718] [22] 宋建中,胡建芳,彭平安,万晓樵. 2015. 古老地质样品的黑碳记录及其对古气候、古环境的响应. 自然杂志, 37(2): 86-92. [Song J Z,Hu J F,Peng P A,Wan X J.2015. Black carbon record in ancient geological samples and its responses to the paleoclimate and paleoenvironment. Chinese Journal of Nature, 37(2): 86-92] [23] 孙家齐,马瑞士,舒良树. 2001. 新疆乌鲁木齐煤田自燃烧变岩岩石特征. 南京建筑工程学院学报, 59(4): 15-19. [Sun J Q,Ma R S,Shu L S.2001. Petrologic characteristics of burnt rocks from coalfield selfcombustion at Urümqi,Xinjiang. Journal of Nanjing Architectural and Civil Engineering Institute, 59(4): 15-19] [24] 王尤宏. 1993. 新疆浅水河烧变岩矿床的地质特征及开发应用. 建材地质,(1): 21-25. [Wang Y H.1993. Geological characteristics,development and application of burnt rock ores in Qainshuihe,Xinjiang. Nonmetallic Geology,(1): 21-25] [25] 王玉山. 1986. 烧变岩及其特征. 新疆地质科技,(2): 30-31. [Wang Y S.1986. Characteristics of burnt rocks. Xinjiang Geological Technology,(2): 30-31] [26] 王志宇,史波波,刘鹏. 2020. 煤田火区烧变岩成岩机理与利用. 科学技术与工程, 20(15): 6004-6010. [Wang Z Y,Shi B B,Liu P.2020. Formation and utilization of burnt rock in coalfield fire area. Science Technology and Engineering, 20(15): 6004-6010] [27] 夏斐,关汝清,魏捐鹏. 2008. 柠条塔井田烧变岩的地质特征. 陕西煤炭, 27(2): 7-10. [Xia F,Guan R Q,Wei J P.2008. Geological characteristics of burnt rocks in Ningtiaota Coal Field. Shaanxi Coals, 27(2): 7-10] [28] 业渝光,邬象隆,刁少波,蒋炳南,郑显华,董砚如. 1998. 塔里木盆地库车河烧变岩的形成年龄. 海洋地质与第四纪地质, 18(4): 115-119. [Ye Y G,Wu X L,Diao S B,Jiang B N,Zheng X H,Dong Y R.1998. Formation ages of burned metamorphic rocks from the Kuqa river section Tarim Basin. Marine Geology & Quaternary Geology, 18(4): 115-119] [29] 张华,马井会,郑有飞. 2008. 黑碳气溶胶辐射强迫全球分布的模拟研究. 大气科学, 32(5): 1147-1158. [Zhang H,Ma J H,Zheng Y F.2008. The study of global radiative forcing due to black carbon aerosol. Chinese Journal of Atmospheric Sciences, 32(5): 1147-1158] [30] 张跃恒,李斌,王一霖,崔春兰,任玺宁,罗群,李宝生,董振国. 2020. 大柳塔煤矿活鸡兔井束鸡沟小窑延安组烧变岩地质特征及地质灾害防治. 中国煤炭地质, 32(10): 47-54. [Zhang Y H,Li B,Wang Y L,Cui C L,Ren X N,Luo Q,Li B S,Dong Z G.2020. Geological Yan’an Formation burnt rock geological features and geological hazard control in Shujigou small coalmine,Huojitu Minefield,Daliuta coalmine. Coal Geology of China, 32(10): 47-54] [31] 张渝,胡社荣,彭纪超. 2016. 中国北方煤层自燃产物分类及宏观模型. 煤炭学报, 41(7): 1798-1805. [Zhang Y,Hu S R,Peng J C.2016. Metamorphic products of coal combustion and its macroscopic models in North China. Journal of China Coal Society, 41(7): 1798-1805] [32] 周斌,沈承德,郑洪波,赵美训,孙彦敏. 2009. 黄土高原中部晚第四纪以来植被演化的元素碳碳同位素记录. 科学通报, 54(9): 1262-1268. [Zhou B,Shen C D,Zheng H B,Zhao M X,Sun Y M.2009. Vegetation evolution on the central Chinese Loess Plateau since late Quaternary evidenced by elemental carbon isotopic composition. Chinese Science Bulletin, 54(9): 1262-1268] [33] 祝孟博,宋建中,童晓宁,胡建芳,席党鹏,曹怀仁,彭平安,万晓樵. 2017. 松辽盆地晚三冬期的黑碳记录及其古环境意义. 地学前缘, 24(1): 166-173. [Zhu M B,Song J Z,Tong X N,Hu J F,Xi D P,Cao H R,Peng P A,Wan X Q.2017. The records of black carbon from Songliao Basin,Northeast China in Late Santonian,and their paleoenvironment implication. Earth Science Frontiers, 24(1): 166-173] [34] An Z,Kutzbach J E,Prell W L,Porter S C.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62-66. [35] Baboolal A A,Knight J,Wilson B.2018. Petrography and mineralogy of pyrometamorphic combustion metamorphic rocks associated with spontaneous oxidation of lignite seams of the Erin Formation,Trinidad. Journal of South American Earth Sciences, 82: 181-192. [36] Beamish B B.2005. Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. International Journal of Coal Geology, 64: 139-144. [37] Belcher C,McElwain J.2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321: 1197-1200. [38] Bentor Y K,Kastuer M,Periman L.1981. Combustion metamorphism of bituminous sediments and the fonnation of melts of granitie and sedimentary composition. Geoehimica Et Cosmoehimica Aeta, 45: 2229-2255. [39] Bertò M,Cappelletti D,Barbaro E,Varin C,Gallet J C.2021. Variability of Black Carbon mass concentration in surface snow at Svalbard. Atmospheric Chemistry & Physics Discussions, 7: 1-30. [40] Chen B,Franceschi M,Wang Y Y,Duan X,Jin X,Shi Z Q.2021. Late Cenozoic coal fires in Liuhuanggou area(Xinjiang,Northwestern China): ages,controlling factors and evolution. Russian Geology and Geophysics, 5: 1-13. [41] Chen B,Wang Y Y,Franceschi M,Duan X,Li K Z,Yu Y,Wang M L,Shi Z Q.2020. Petrography,mineralogy,and geochemistry of combustion metamorphic rocks in the northeastern Ordos Basin,China: implications for the origin of “White Sandstone”. Minerals, 10(12): 1-21. [42] Corbin J C,Sierau B,Gysel M.2013. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions. Atmospheric Chemistry and Physics Discussions, 13(10): 27561-27595. [43] Cosca M A,Essene E J,Geissman J W, Simmons W B, Coates D A.1989. Pyrometamorphic rocks associated with naturally burned coal beds,Powder River Basin,Wyoming. Am Mineral, 74: 85-100. [44] Eliseev A V,Mokhov I Ⅰ,Chernokulsky A V.2014. Influence of ground and peat fires on CO2 emissions into the atmosphere//Doklady Earth Sciences. Springer Nature BV, 459(2): 1565. [45] Evans M,Heller F.2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. New York: Elsevier,1-295. [46] Fediuk F.1987. The Glass of Bohemian Porcelanites. 2nd International Conference on Natural Glasses. Prague: Konta J,21-25. [47] Grapes R.2010. Anthropogenic and biomass pyrometamorphism. Pyrometamorphism, 3: 235-288. [48] Grapes R,Zhang K,Peng Z L.2009. Paralava and clinker products of coal combustion,Yellow River,Shanxi Province,China. Lithos, 113: 831-843. [49] Grapes R,Korzhova S,Sokol E,Seryotkin Y.2011. Paragenesis of unusual Fe-cordierite(sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin,Siberia,Russia. Contributions to Mineralogy and Petrology, 162(2): 253-273. [50] Guo Z,Sun B,Zhang Z,Peng S Z,Xiao G Q,Ge,J Y,Hao,Q Z,Qiao Y S,Liang M Y,Liu J F,Yin Q Z,Wei J J.2008. A major reorganization of Asian climate regime by the Early Miocene. Climate of the Past, 4: 153-174. [51] Heffern E L,Coates D A.1999. Hydrology and ecology of clinker in the Powder River Basin,Wyoming and Montana. Coalbed Methane and Tertiary Geology of the Powder River Basin: 50th Annual Field Conference Guidebook: 231-252. [52] Heffern E L,Coates D A.2004. Geologic history of natural coal-bed fires,Powder River Basin,USA. International Journal of Coal Geology, 59: 25-47. [53] Heffern E L,Reiners P W,Naeser C W.2007. Geochronology of clinker and implications for evolution of the Powder River Basin landscape,Wyoming and Montana. In: Stracher G B(ed). Geology of coal fires: case studies from around the world. The Geological Society of America: 155-175. [54] Hower J C,Hood M M,Taggart R K,Hsu-Kim H.2017. Chemistry and petrology of paired feed coal and combustion ash from anthracite-burning stoker boilers. Fuel, 199: 438-446. [55] Jia G D,Peng P A,Zhao Q H,Jian Z M.2003. Changes in terrestrial ecosystem since 30Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology, 31: 1093-1096. [56] Kuenzer C,Stracher G B.2012. Geomorphology of coal seam fires. Geomorphology, 138: 209-222. [57] Kuenzer C,Zhang J,Tetzlaff A,Wagoner Dijk P,Voigt S,Mehl H,Wagner W.2007. Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in north-central China. Applied Geography, 27(1): 42-62. [58] Kus J,Hiltmann W,Balke A.2007. Researching coal spontaneous combustion: micropetrography of coal oxidation and carbonization. UNESCO: 1-24. [59] Kutzbach J E,Prell W L,Ruddiman W F.1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. Journal of Geology, 101: 177-190. [60] Manabe S,Broccoli A J.1990. Mountains and arid climates of middle latutides. Science, 247: 192-194. [61] Novikov I,Sokol E.2007. Combustion metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrologica Sinica, 23: 1561-1572. [62] Novikov I S,Sokol E V,Travin A V,Novikova S A.2008. Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology(example of the Salair-Kuznetsk Basin transition). Russian Geology and Geophysics, 49(6): 378-396. [63] Novikova S,Sokol E,Khvorov P.2016. Multiple combustion metamorphic events in the Goose Lake Coal Basin,Transbaikalia,Russia: first dating results. Quaternary Geochronology, 36: 38-54. [64] Oliveira M L S,Pinto D,Tutikian B F,Boit K,Saikia B K,Luis F O.2019. Pollution from uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal mines. Journal of Cleaner Production, 215: 1140-1148. [65] Patterson W A,Edwards K J,Maquire D J.1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Review, 6: 3-23. [66] Peacor D R,Clark B H.1992. Pyrometamorphism and partial melting of shales during combustion metamorphism: mineralogical,textural,and chemical effects. Contributions to Mineralogy & Petrology, 112: 558-568. [67] Querol X,Zhuang X,Font O,Izquierdo M,Alastuey A,Castro I,van Drooge B L,Moreno,T,Grimalt J O,Elvira J,Cabañas M,Bartroli R,Hower J C,Ayora C,Plana F,López-Solera A.2011. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: a review and new experimental data. International Journal of Coal Geology, 85: 2-22. [68] Reiners P W,Riihimaki C A,Heffern E L.2011. Clinker geochronology,the first glacial maximum,and landscape evolution in the northern Rockies. GSA Today, 21: 4-9. [69] Riihimaki C A,Reiners P W,Heffern E L.2009. Climate control on Quaternary coal fires and landscape evolution,Powder River basin,Wyoming and Montana. Geology, 37: 255-258. [70] Rosema A,van Genderen J L,Schalke H J.1995. Environmental monitoring of coal fires in North China. Project Identification Mission Report,Netherlands: 18-19. [71] Saxby J D.2000. Minerals in Coal. In: Mastalerz M,Glikson M(eds). Organic Matter and Mineralisation: Thermal Alteration,Hydrocarbon Generation and Role in Metallogenesis. Netherlands: Springer,314-326. [72] Shi Z,Chen B,Wang Y Y,Hou M C,Jin X,Song H,Wang,X D.2020. A linkage between uranium mineralization and high diagenetic temperature caused by coal self-ignition in the southern Yili Basin,northwestern China. Ore Geology Reviews, 121: 103443. [73] Silva L F O,Kátia M.2011. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental monitoring and assessment, 174(1): 187-197. [74] Sokol E V,Kokh S N,Kozmenko O A,Novikova S,Khvorov P,Nigmatulina E,Belogub E,Kirillov M.2018. Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues(a case study from the Bulganak Field,Northern Black Sea). Minerals, 8(8): 1-38. [75] Sokol E V,Volkova N I,Stracher G B.2007. Combustion metamorphic events resulting from natural coal fires. Reviews in Engineering Geology,162(s4-6): 373-378. [76] Song Z,Kuenzer C.2014. Coal fires in China over the last decade: a comprehensive review. International Journal of Coal Geology, 133: 72-99. [77] Stracher G B,Prakash A,Sokol E V.2015. Case studies-Coal fires. In: Stracher G B,Prakash A,Sokol E V(eds). Coal and Peat Fires: A Global Perspective. Amsterdam: Elsevier,1-786. [78] Suárez-Ruiz I,Crelling J C.2008. Applied Coal Petrology: Role of Petrology in Coal Utilization. Amsterdam: Elsevier,1-299. [79] Vassilev S V,Vassileva C G.1996. Occurrence,abundance and origin of minerals in coals and coal ashes. Fuel Processing Technology, 48: 85-106. [80] Verardo D J,Ruddiman W F.1996. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: climatic and geochamical significance. Geology, 24(9): 855-857. [81] Wang X,Ding Z L,Peng P A.2012. Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity. Palaeogeography,Palaeoclimatology,Palaeoecology, 315: 61-74. [82] Weinberger R,Burg A.2019. Reappraising columnar joints in different rock types and settings. Journal of Structural Geology, 125: 185-194. [83] Westaway R.2009. Active crustal deformation beyond the SE margin of the Tibetan Plateau: constraints from the evolution of fluvial systems. Global and Planetary Change, 68: 395-417. [84] Wildman R A,Hickey L J,Dickinson M B,Berner R A,Robinson J M,Dietrich M,Essenhigh R H,Wildman C B.2004. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology, 32: 457-460. [85] Wolbach W S,Gilmour I,Anders E,Orth C J,Brooks R R.1988. Global fire at the Cretaceous-Tertiary boundary. Nature, 334: 665-669. [86] Yue L,Li J,Zheng G Z,Li Z P.2007. Evolution of the Ordos Plateau and environmental effects. Science in China Series D: Earth Sciences, 50: 19-26. [87] Žáček V,Skala R,Dvořák Z.2010. Rocks and minerals formed by fossil combustion pyrometamorphism in the Neogene brown coal Most Basin,Czech Republic. Bulletin Mineralogicko-Petrologickeho Oddeleni Narodniho Muzea v Praze, 18(1): 1-11. [88] Zhang X,Kroonenberg S B,De Boer C B.2004. Dating of coal fires in Xinjiang,north-west China. Terra Nova, 16: 68-74. [89] Zhang Y,Zhang X,Hower J C,Hu,S R.2020. Mineralogical and geochemical characteristics of pyrometamorphic rocks induced by coal fires in Junggar Basin,Xinjiang,China. Journal of Geochemical Exploration, 213: 106511. [90] Zhou B,Shen C D,Sun W D,Bird M,Ma W T,Taylor D,Liu W G,Peterse F,Yi W X,Zheng H B.2014. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning. Geology, 42(12): 1067-1070. [91] Zilberfarb A R.2014. Metamorphism of Cretaceous Standstones by Natural Coal-Fires. Utah: Scripps College,1-66.