Occurrence types and genesis of anhydrite from the Ma56 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin
Deng Wei1,2, Tan Xiu-Cheng1,2, Zhang Dao-Feng3, Zhong Shou-Kang1,2, Dong Guo-Dong3, Xiao Di1,2, Lu Zi-Xing3, Yang Meng-Ying1,2, Xiong Ying1,2, Nie Wan-Cai4
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 2 Research Branch of Southwest Petroleum University Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500,China; 3 Research Institute of Exploration and Development,Changqing Oilfield Company of PetroChina,Xi'an 710021,China; 4 Yihuang Natural Gas Project Department,Changqing Oilfield Company of PetroChina,Yan'an 716000,China
Abstract There are diverse anhydrite in Ma56 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin. Based on systematic macroscopic and microscopic petrography analysis,different types of anhydrite were identified and distinguished,such as scattered(A1),laminar(A2),dense massive(A3),nodular or clumpy(A4),squiggly or brecciated(A5).The analysis of high frequency cycles and microfacies of a single well showed that five kinds of high-frequency,shallowing-upward sequences were developed in the Ma56 submember,which are respectively related to tidal flat,lagoon,oolitic shoal,Fragmental shoal and microbial mound. It was found that the occurrence type,production position and distribution form of the anhydrite had a good coupling relationship with the shallower sequences.Type A1 and A2 anhydrite occur in the lower and middle part of the high-frequency,shallowing-upward sequence,which is mainly related to the dolomite lagoon or gypsum lagoon,and belongs to the primary chemical sedimentary origin of the lagoon facies. The A3 type anhydrite is distributed in the upper part of the high-frequency,shallowing-upward sequence,which is controlled by the gypsum lagoon,and also belongs to primary chemical sedimentary origin. The classic nodular anhydrite(A4-1)occurs in tidal flat sedimentary sequence in a random distribution form,and is caused by diagenetic metasomatism or gypsification,which is similar to the traditional sabha metasomatism gypsum nodules.A4-2 anhydrite mainly occurs in grainstone and microbialite,and is mainly formed by precipitation of CaSO4-rich subsurface brine in dissolution pore and small caves.A5 type anhydrite occurs at the upper and top of the shallowing-upward sequence,which is related to high frequency exposure and is caused by karst transformation of dissolution and filling in the syngenetic period.A fully developed single high-frequency cycle has roughly experienced four evolutionary stages: early high-frequency rapid transgression,late high-frequency rapid transgression to early slow regression,late high-frequency slow regression,and exposure at the end of high-frequency regression,which formed a coupled marine carbonate and anhydrite co-occurrence sequence. These understandings will have important referential significance for the re-understanding of the sedimentary paleoenvironment during the deposition of the Majiagou Formation.
Fund:China National Petroleum Corporation upstream field basic forward-looking project(No.2021DJ0501)
Corresponding Authors:
Tan Xiu-Cheng,born in 1970,professor and Ph.D. advisor,is mainly engaged in sedimentology and reservoir geology. E-mail: tanxiucheng70@163.com。
About author: Deng Wei,born in 1996,master degree candidate,is mainly engaged in reservoir geology. E-mail: weideng104122@163.com。
Cite this article:
Deng Wei,Tan Xiu-Cheng,Zhang Dao-Feng et al. Occurrence types and genesis of anhydrite from the Ma56 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin[J]. JOPC, 2022, 24(2): 226-244.
Deng Wei,Tan Xiu-Cheng,Zhang Dao-Feng et al. Occurrence types and genesis of anhydrite from the Ma56 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin[J]. JOPC, 2022, 24(2): 226-244.
[1] 包洪平,杨承运,黄建松. 2004. “干化蒸发”与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识. 古地理学报,6(3): 23-32. [Bao H P,Yang C Y,Huang J S. 2004. “Evaporation drying”and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition),6(3): 23-32] [2] 冯增昭,鲍志东. 1999. 鄂尔多斯奥陶纪马家沟期岩相古地理. 沉积学报, 17(1): 1-8. [Feng Z Z,Bao Z D. 1999. Lithofacies palaeogeography of Majiagou Stage of Ordovician in Ordos. Acta Sedimentologica Sinica, 17(1): 1-8] [3] 黄道军,钟寿康,张道锋,王保保,廖建初,谢康,卢子兴,谭秀成. 2021. 蒸发背景沉积序列精细刻画及沉积学解译: 以鄂尔多斯盆地中部中奥陶统马五6亚段为例. 古地理学报, 23(4): 735-755. [Huang D J,Zhong S K,Zhang D F,Wang B B,Liao J C,Xie K,Lu Z X,Tan X C. 2021. Datailed characterization and interpretation of sedimentary sequences under evaporitic environments: a case from the Ma56 submember of Middle Ordovician in central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 23(4): 735-755] [4] 刘新社,漆亚玲,李树同,邓秀芹,王琪,张文选,牟炜卫,闫灿灿,李阳. 2017. 鄂尔多斯盆地古隆起东北侧马五41储层膏模孔类型及充填过程分析. 沉积学报, 35(6): 1217-1224. [Liu X S,Qi Y L,Li S T,Deng X Q,Wang Q,Zhang W X,Mou W W,Yan C C,Li Y. 2017. Analysis on the types and the filling process of the anhydrite-model pore of Ma541 in northeast of the palaeohigh,Ordos Basin. Acta Sedimentologica Sinica, 35(6): 1217-1224] [5] 谭秀成,肖笛,陈景山,李凌,刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报,(4): 19-34. [Tan X C,Xiao D,Chen J S,Li L,Liu H. 2015. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography(Chinese Edition),(4): 19-34] [6] 王泽中,翟永红. 1992. 山西临汾奥陶系石膏岩的成因及形成环境. 石油与天然气地质, 13(3): 314-321. [Wang Z Z,Zhai Y H. 1992. Origin and depositional environment of Ordovician gypsums in Linfen,Shanxi Proxince. Oil and Gas Geology, 13(3): 314-321] [7] 席胜利,熊鹰,刘显阳,雷晶超,刘明洁,刘灵,刘耘,文汇博,谭秀成. 2017. 鄂尔多斯盆地中部奥陶系马五盐下沉积环境与海平面变化. 古地理学报, 19(5): 773-790. [Xi S L,Xiong Y,Liu X Y,Lei J C,Liu M J,Liu L,Liu Y,Wen H B,Tan X C. 2017. Sedimentary environment and sea level change of the subsalt interval of Member 5 of Ordovician Majiagou Formation in central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 773-790] [8] 肖笛. 2017. 海相碳酸盐岩早成岩期岩溶及其储层特征研究. 西南石油大学博士学位论文,87-109. [Xiao D. 2017. Research on eogenetic karst of marine carbonate and its reservoir in the three major basins,western China. Doctoral Dissertation of Southwest Petroleum University,87-109] [9] 谢康,谭秀成,冯敏,王保保,钟寿康,杨梦颖,聂万才,乔占峰,曾伟. 2020. 鄂尔多斯盆地苏里格气田东区奥陶系马家沟组早成岩期岩溶及其控储效应. 石油勘探与开发, 47(6): 1159-1173. [Xie K,Tan X C,Feng M,Wang B B,Zhong S K,Yang M Y,Nie W C,Qiao Z F,Zeng W. 2020. Eogenetic karst and its control on reservoirs in the Ordovician Majiagou Formation,eastern Sulige gas field,Ordos Basin,NW China. Petroleum Exploration and Development, 47(6): 1159-1173] [10] 熊鹰,谭秀成,伍坤宇,王小芳. 2020. 碳酸盐岩储集层成岩作用中“孔隙尺寸控制沉淀”研究进展,地质意义及鄂尔多斯盆地实例. 古地理学报, 22(4): 744-760. [Xiong Y,Tan X C,Wu K Y,Wang X F. 2020. Research advances and geological implication of the “pore-size controlled precipitation” in carbonate reservoir. Journal of Palaeogeography(Chinese Edition), 22(4): 744-760] [11] 薛平. 1985. 山西中奥陶世石膏岩的成因类型及生成环境. 地球科学,(4): 33-194. [Xue P. 1985. Genetic types and formation environment of middle Ordovician gypsum rocks in Shanxi. Earth Science-Journal of Wuhan College of Geology,(4): 33-194] [12] 薛平. 1986. 陆表海台地型蒸发岩的成因探讨. 地质论评,(1): 59-66. [Xue P. 1986. Discussion on the origin of epicontinental platform type evaporites. Geological Review,(1): 59-66] [13] 姚泾利,魏新善,张道锋,王少飞,黄道军,季海锟. 2010. 硬石膏结核白云岩沉积微相: 以鄂尔多斯盆地东部马五13小层为例. 石油勘探与开发,(6): 55-60. [Yao J L,Wang X S,Zhang D F,Wang S F,Huang D J,Ji H K. 2010. Sedimentary microfacies of anhydrite concretion dolomite rock: take Majiagou Formation Ma5_1~3 layer in the eastern Ordos Basin as an example. Petroleum Exploration & Development,(6): 55-60] [14] 余浩杰,钟寿康,李浮萍,薛雯,田清华. 2021. 苏里格气田马家沟组膏模孔型储层特征及成因. 西南石油大学学报: 自然科学版, 43(3): 10. [Yu H J,Zhong S K,Li F P,Xue W,Tian Q H. 2021. Characteristics and genesis of the gypsum-mold type reservoir of the Majiagou Formation in the Sulige Gas Field. Journal of Southwest Petroleum University(Science & Technology Edition), 43(3): 10] [15] 张吉森,曾少华,黄建松,马振芳,王泽中. 1991. 鄂尔多斯东部地区岩盐的发现,成因及其意义. 沉积学报,(2): 34-43. [Zhang J S,Zeng J H,Huang J S,Ma Z F,Wang Z Z. 1991. Discovery,genesis and significance of halite in eastern Ordos. Acta Sedimentologica Sinica,(2): 34-43.] [16] 张彭熹. 1992. 中国蒸发岩研究中几个值得重视的地质问题的讨论. 沉积学报, 10(3): 78-84. [Zhang P X. 1992. Discussion on several important geological problems in the study of evaporites in China. Acta Sedimentologica Sinica, 10(3): 78-84] [17] 张永生,朱常伟,邢恩袁,王卓卓,郑绵平,施立志,苏奎,桂宝玲,吴素娟,蒋苏扬. 2015. 鄂尔多斯盆地奥陶纪马家沟期岩相古地理演化与成钾意义. 地质学报, 89(11): 1921-1935. [Zhang Y S,Zhu C W,Xing E Y,Wang Z Z,Zheng M P,Shi L Z,Su K,Gui B L,Wu S J,Jiang S Y. 2015. Evolution of lithofacies paleogeography in the Ordos Basin and its lmplication of potash formation. Acta Geologica Sinica, 89(11): 1921-1935. [18] 赵海彤,张永生,邢恩袁,王琳霖,于冬冬,商雯君,桂宝玲,李凯. 2018. 陕北盐盆中奥陶统马五段蒸发岩硫同位素特征及其古环境意义. 地质学报, 92(8): 1680-1692. [Zhao H T,Zhang Y S,Xing E Y,Wang L L,Yu D D,Shang W J,Gui B L,Li K. 2018. Sulfur isotopic characteristics of evaporite in the Middle Ordovician Mawu Member in the Salt Basin of Northern Shaanxi and its paleoenvironment significance. Acta Geologica Sinica, 92(8): 1680-1692] [19] 赵艳军,刘成林,胡宇飞. 2016. 陕北盐盆奥陶系马家沟组五段蒸发岩沉积环境与作用: 来自石盐流体包裹体的证据. 矿床地质, 35(6): 1144-1156. [Zhao Y J,Liu C L,Hu Y F. 2016. Sedimentary environment and sedimentation of evaporite in the fifth Member of Majiagou Formation of Salt Basin in Northern Shaanxi Ordovician strata: evidence from fluid inclusions. Mineral Deposits, 35(6): 1144-1156] [20] Aleali M,Rahimpour-Bonab H,Moussavi-Harami R,Jahani D. 2013. Environmental and sequence stratigraphic implications of anhydrite textures: a case from the Lower Triassic of the Central Persian Gulf. Journal of Asian Earth Sciences, 75: 110-125. [21] Anderson R Y,Dean W E,Kirkland D W Snider H I. 1972. Permian castile varved evaporite sequence,West Texas and New Mexico. Geological Society of America Bulletin, 83(1): 59-85. [22] Butler G P. 1969. Modern evaporite deposition and geochemistry of coexisting brines,the Sabkha,Trucial Coast,Arabian Gulf. Journal of Sedimentary Research,39(1). [23] Becker F,Bechstaedt T. 2006. Sequence stratigraphy of a carbonate-evaporite succession(Zechstein 1,Hessian Basin,Germany). Sedimentology, 53(5): 1083-1120. [24] Cody R D,Cody A M. 1988. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Journal of Sedimentary Petrology, 58(2): 247-255. [25] Dean W E,Davies,G R,Anderson R Y. 1975. Sedimentological significance of nodular and laminated anhydrite. Geology,13(7): 367-372. [26] Katz A,Starinsky A. 2009. Geochemical history of the Dead Sea. Aquatic Geochemistry, 15(1-2): 159-194. [27] Luo S C,Tan X C,Chen L,Li F,Chen P Y,Xiao D. 2019. Dense brine refluxing: a new genetic interpretation of widespread anhydrite lumps in the Oligocene-Lower Miocene Asmari Formation of the Zagros foreland basin,NE Iraq. Marine and Petroleum Geology, 101: 373-388. [28] Peryt T M. 1994. The anatomy of a sulphate platform and adjacent basin system in the Leba sub-basin of the Lower Werra Anhydrite(Zechstein,Upper Permian),northern Poland. Sedimentology, 41(1): 83-113. [29] Quijada I E,Benito M I,Suarez G P,Rodríguez M M,Campos S S. 2020. Challenges to carbonate-evaporiteperitidalfacies models and cycles: insights from Lower Cretaceous stromatolite-bearing deposits(Oncala Group,N Spain). Sedimentary Geology, 408: 10572. [30] Schmalz R F. 1969. Deep-water evaporite deposition: a genetic model. AAPG Bulletin, 53(4): 798-823. [31] Schreiber B C,Friedman G M,Decima A,Schreiber E. 1976. Depositional environments of Upper Miocene(Messinian)evaporite deposits of the Sicilian Basin. Sedimentology, 23(6): 729-760. [32] Shearman D J,Fuller J G. 1969. Anhydrite diagenesis,calcitization,and organic laminites,Winnipegosis formation,Middle Devonian,Saskatchewan. Bulletin of Canadian Petroleum Geology,17(3),496-525. [33] Sorento T,Olaussen S,Stemmerik L. 2020. Controls on deposition of shallow marine carbonates and evaporites-lower Permian Gipshuken Formation,central Spitsbergen,central Spitsbergen,Arctic Norway. Sedimentology, 67(1): 207-238. [34] Strohmenger C J,Al-Mansoori A,Al-Jeelani O,Al-Shamry A,Al-Hosani I,Al-Mehsin K,Shebl H. 2010. The sabkha sequence at Mussafah Channel(Abu Dhabi,United Arab Emirates): facies stacking patterns,microbial-mediated dolomite and evaporite overprint. GeoArabia, 15(1): 49-90. [35] Vogel M B,Marais D,Parenteau M N,Jahnke L L,Turk K A,Kubo,M D. 2010. Biological influences on modern sulfates: textures and composition of gypsum deposits from Guerrero Negro,Baja California Sur,Mexico. Sedimentary Geology, 223(3-4): 265-280. [36] Warren J K. 2006. Evaporites: Sediments,Resources and Hydrocarbons. Springer Berlin Heidelberg: 22-40. [37] Warren J K,Kendall C G S C. 1985. Comparison of sequences formed in marine sabkha(subaerial)and salina(subaqueous)settings: modern and ancient. AAPG bulletin, 69(6): 1013-1023. [38] West I M,Ali Y A,Hilmy M E. 1979. Primary gypsum nodules in a modern sabkha on the Mediterranean coast of Egypt. Geology, 7(7): 354-358. [39] Xiao D,Tan X C,Zhang D F,He W,Li L,Shi Y H,Chen J P,Cao J. 2019. Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin(central China)and their heterogeneous impact on reservoir quality. Marine and Petroleum Geology, 99: 190-207. [40] Yeşilova P G,Gökmen D. 2020. The paleodepositional environment,diagenetic and depositional conditions of the middle-late Miocene Koluz gypsum member(NE Wagoner,eastern Turkey). Carbonates and Evaporites, 35(3): 1-21.