Abstract Submarine fan on shallow shelf are developed in the Member 1 of the Miocene Huangliu Formation in the Dongfang X Gas Field of the Yinggehai Basin. The sedimentary type in this area is special,and the sand body connectivity is complicated. The research on reservoir architecture of submarine fan is relatively weak,which seriously affects the oil and gas exploration and development in the Dongfang X Gas Field. Under the guidance of sequence stratigraphy,sedimentology,logging geology,seismic sedimentology and other theories,and based on the data of core,drilling,logging,3D seismic and seismic wave impedance inversion,the architecture and sandbody distribution pattern within the submarine fan in this area are studied. The results show that: Submarine fan in the study area is mainly middle fan and characterized by the channel,levee,sheet sand and fan margin sand deposits;Channel and sheet sand are common in the IIb gas group of the first member of the Huangliu Formation. Channels are dominated by sedimentation process and can be divided into two stages of development,which are oriented in NW-SE direction;There are three stacking patterns sand body within the reservoir,layered filling,vertical cut-stacking and lateral cut-stacking;The controlling factors of reservoir architecture include the sediment supply,the slope gradient and the energy of the gravitational flow.
Fund:Co-funded by the Natural Science Foundation of Hubei Province(No.2020CFB745)and Open Foundation of TOP Disciplines in Yangtze University(No.2019KFJJ0818010)
Corresponding Authors:
He You-Bin,born in 1964,is a professor and Ph.D. supervisor in School of Geosciences,Yangtze University.He is currently engaged in the research on sedimentology.E-mail: heyb122@163.com.
About author: Li Ya-Ru,born in 1997,is a master degree candidate in school of Geosciences,Yangtze University. She is currently engaged in the research on sedimentology.E-mail: liyaru199710@126.com.
Cite this article:
Li Ya-Ru,Li Hua,Yang Zhao-Qiang et al. Reservoir architecture of the Huangliu Formation submarine fan in Yinggehai Basin,South China Sea[J]. JOPC, 2022, 24(3): 556-567.
Li Ya-Ru,Li Hua,Yang Zhao-Qiang et al. Reservoir architecture of the Huangliu Formation submarine fan in Yinggehai Basin,South China Sea[J]. JOPC, 2022, 24(3): 556-567.
[1] 陈宇航,姚根顺,吕福亮,鲁银涛,陈亮,唐鹏程,曹全斌. 2017. 东非鲁伍马盆地渐新统深水水道—朵体沉积特征及控制因素. 石油学报, 38(9): 1047-1058. [Chen Y H,Yao G S,Lü F L,Lü Y T,Chen L,Tang P C,Cao Q B.2017. Sedimentary characteristics and controlling factors of Oligocene deep-water channel-lobe in Rovuma Basin of the East Africa. Acta Petrolei Sinica, 38(9): 1047-1058] [2] 黄银涛. 2016. 莺歌海盆地东方区黄流组浅海重力流沉积特征及地质建模. 中国地质大学硕士学位论文. [Huang Y T.2016. Sedimentary characteristics and reservoir modelling of shallow-marine gravity flow deposition from Huangliu Formation in Dongfang area,Yinggehai Basin,northwestern South China Sea. Masteral dissertation of China University of Geosciences] [3] 黄银涛,姚光庆,朱红涛,周锋德. 2016. 莺歌海盆地东方区黄流组重力流砂体的底流改造作用. 石油学报, 37(7): 855-866. [Huang Y T,Yao G Q,Zhu H T,Zhou F D.2016. Reworking of gravity flow sandbody by bottom-current from Huangliu Formation in Dongfang area of Yinggehai Basin,northwestern South China Sea. Acta Petrolei Sinica, 37(7): 855-866] [4] 李华,何幼斌,王振奇. 2011. 深水高弯度水道—堤岸沉积体系形态及特征. 古地理学报, 13(2): 139-149. [Li H,He Y B,Wang Z Q.2011. Morphology and characteristics of deep water high sinuous channel-levee system. Journal of Palaeogeography(Chinese Edition), 13(2): 139-149] [5] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X.2018. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 43(6): 2149-2159] [6] 李华,何幼斌. 2020. 深水重力流水道沉积研究进展. 古地理学报, 22(1): 161-174. [Li H,He Y B.2020. Research progress on deepwater gravity flow channel deposit. Journal of Palaeogeography(Chinese Edition), 22(1): 161-174] [7] 梁晓伟,鲜本忠,冯胜斌,陈鹏,尤源,吴千然,淡卫东,张文淼. 2021. 鄂尔多斯盆地陇东地区7段重力流砂体构型及其主控因素. 沉积学报. DOI: 10.14027/j.issn.1000-0550.2021.017. [Liang X W,Xian B Z,Feng S B,Chen P,You Y,Wu Q R,Dan W D,Zhang W M.2021. Architecture and main controls of gravity-flow sandbodies in Chang 7 Member,Longdong Area,Ordos Basin. Acta Sedimentologica Sinica. DOI: 10.14027/j.issn.1000-0550.2021.017] [8] 廖计华,吴克强,郭刚,甘华军,孙鸣,蔡露露,朱石磊,刘子玉. 2018. 莺歌海盆地东方区黄流组大型强振幅体沉积内幕及其油气意义. 石油与天然气地质, 39(1): 153-164. [Liao J H,Wu K Q,Guo G,Gan H J,Sun M,Cai L L,Zhu S L,Liu Z Y.2018. Characteristics of the large-scale high-amplitude reflections and its significance in hydrocarbon exploration in the Huangliu Formation of Dongfang area of the Yinggehai Basin,South China Sea. Oil & Gas Geology, 39(1): 153-164] [9] 林煜,吴胜和,王星,赵晓明,凌云,路瑶,张佳佳. 2014. 深水浊积朵叶储层构型模式研究. 天然气地球科学, 25(8): 1197-1204. [Lin Y,Wu S H,Wang X,Zhao X M,Ling Y,Lu Y,Zhang J J.2014. Research on reservoir architecture models of deep-water turbidite lobes. Natural Gas Geoscience, 25(8): 1197-1204] [10] 蔺鹏. 2018. 西非陆坡逆冲构造区海底扇沉积构型研究. 中国石油大学硕士学位论文. [Lin P.2018. Research on the depositional architecture of submarine fan in the thrust zone of continental slope,West Africa. Masteral dissertation of China University of Petroleum] [11] 刘峰,裴健翔,汪洋,高华,潘光超,李洋森. 2015. 古地貌对海底扇沉积过程的控制及与油气富集的关系: 以莺歌海盆地东方区黄流组一段为例. 中国海上油气, 27(4): 37-46. [Liu F,Pei J X,Wang Y,Gao H,Pan G C,Li Y S.2015. Palaeogeomorphologic control on sedimentary process of submarine fans and hydrocarbon accumulation: a case study of Member 1 of Huangliu Formation in DF area,Yinggehai basin. China Offshore Oil and Gas, 27(4): 37-46] [12] 秦国省,吴胜和,郑联勇,喻宸. 2015. 基于沉积过程的三角洲前缘河口坝储层构型精细分析: 以老君庙油田L11小层为例. 岩性油气藏,27(6),55-63. [Qin G S,Wu S H,Zheng L Y,Yu C.2015. Detailed architecture analysis of mouth bar in delta front based on sedimentary process: a case study of L11 layer in Laojunmiao Oilfield. Lithologic Reservoirs,27(6): 55-63] [13] 王华,陈思,甘华军,廖计华,孙鸣. 2015. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例. 地学前缘, 22(1): 21-34. [Wang H,Chen S,Gan H J,Liao J H,Sun M.2015. Accumulation mechanism of large shallow marine turbidite deposites: a case study of gravity flow deposites of the Huangliu Formation in Yinggehai Basin. Earth Science Frontiers, 22(1): 21-34] [14] 王玉,漆智,杨朝强,马华帅,郇金来,任影. 2019. 浅海重力流储层沉积模式新认识. 地质科技情报, 38(4): 16-22. [Wang Y,Qi Z,Yang Z Q,Ma H S,Huan J L,Ren Y.2019. New understanding of sedimentary model of gravity flow reservoir in shallow sea. Geological Science and Technology Information, 38(4): 16-22] [15] 许璐. 2018. 莺歌海盆地东方X区黄流组Ⅰ段浅海海底扇精细表征及主控因素研究. 西安石油大学硕士学位论文. [Xu L.2018. Characterization and main controlling factors of submarine-fan of 1st Member of Huangliu Formation in Dongfang X area,Yinggehai Basin. Masteral Dissertation of Xi'an Shiyou University] [16] 岳绍飞,张辉,覃利娟,杨朝强,漆智,王勇标. 2020. 莺歌海盆地东方区黄流组一段砂质碎屑流沉积模式. 大庆石油地质与开发, 39(4): 9-18. [Yue S F,Zhang H,Qin L J,Yang Z Q,Qi Z,Wang Y B.2020. Sandy debris-flow sedimentary mode in Member 1 of Huangliu Formation in Dongfang area of Yinggehai Basin. Petroleum Geology & Oilfield Development in Daqing, 39(4): 9-18] [17] 张佳佳,吴胜和. 2019. 海底扇朵叶沉积构型研究进展. 中国海上油气, 31(5): 88-106. [Zhang J J,Wu S H.2019. Research progress on the depositional architecture of submarine-fan lobes. China Offshore Oil and Gas, 31(5): 88-106] [18] 张磊夫,李易隆. 2020. 深水浊积朵叶体构型特征: 以爱尔兰克莱尔盆地石炭系露头为例. 石油勘探与开发, 47(5): 925-934. [Zhang L F,Li Y L.2020. Architecture of deepwater turbidite lobes: a case study of Carboniferous turbidite outcrop in the Clare Basin,Ireland. Petroleum Exploration and Development, 47(5): 925-934] [19] 张文彪,段太忠,刘志强,刘彦锋,杨志成,徐睿. 2017. 深水浊积水道沉积构型模式及沉积演化: 以西非M油田为例. 地球科学, 42(2): 273-285. [Zhang W B,Duan T Z,Liu Z Q,Liu Y F,Yang Z C,Xu R.2017. Architecture model and sedimentary evolution of deepwater turbidity channel: a case study of M Oilfield in West Africa. Earth Scinece, 42(2): 273-285] [20] 赵晓明,吴胜和,刘丽. 2012. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征. 石油学报, 33(6): 1049-1058. [Zhao X M,Wu S H,Liu L.2012. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield,Niger Delta Basin. Acta Petrolei Sinica, 33(6): 1049-1058] [21] 赵晓明,葛家旺,谭程鹏,张文彪,陆文明. 2019. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望. 中国海上油气, 31(5): 76-87. [Zhao X M,Ge J W,Tan C P,Zhang W B,Lu W M.2019. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure. China Offshore Oil and Gas, 31(5): 76-87] [22] 钟泽红,张迎朝,何小胡,徐涛,任建业,刘小燕,凌涛,韩光明. 2015. 莺歌海盆地东方区黄流组层序叠加样式与海底扇内部构型. 海洋地质与第四纪地质, 35(2): 91-99. [Zhong Z H,Zhang Y C,He X H, Xu T,Ren J Y,Liu X Y,Ling T,Han G M.2015. The Sequence stratigraphy of Huangliu Formation and the internal structures of submarine fan in Dongfang area,Yinggehai Basin. Marine Geology & Quaternary Geology, 35(2): 91-99] [23] Celma C,Teloni R,Rustichelli A.2014. Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill,Monte Ascensione succession(Peri-Adriatic basin,eastern central Italy).International Journal of Earth Sciences, 103: 843-875. [24] Clark I R,Cartwright J A.2009. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the levant basin,eastern mediterranean sea.Marine & Petroleum Geology, 26(8): 1465-1482. [25] Gong C,Steel R J,Wang Y,Lin C,Olariu C.2016a. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, 157: 32-60. [26] Gong C,Steel R J,Wang Y,Lin C,Olariu C.2016b. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas. Earth-Science Reviews, 154: 72-101. [27] Khan Z,Arnott R.2011. Stratal attributes and evolution of asymmetric inner-and outer-bend levee deposits associated with an ancient deepwater channel-levee complex within the Isaac Formation,southern Canada.Marine and Petroleum Geology, 28: 824-842. [28] Kolia V.2007. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them.Marine and Petroleum Geology, 24: 450-469. [29] Kond A,vishnikov V,Sha L,Mak K,2015.Submarine fan reservoir architecture and heterogeneity influence on hard-to-recover reserves. Achimov Fm.Scientific and Technical Challenges in the Well Drilling Progress,24:12-41. [30] Lamb M A,Anderson K S, Graham, S A.2003. Stratigraphic architecture of a sand-rich,deep-sea depositional system: the stevens sandstone,San Joaquin Basin,California. AAPG Special Publication,13. [31] Liu J P,Xian B Z,Ji Y L,Gong C L,Wang J H,Wang Z,Chen P,Song D L,Wei W Z,Zhang X M,Dou L X.2020. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: the Eocene Dongying Depression,Bohai Bay Basin,east China.Marine and Petroleum Geology, 114: 104-197. [32] McArthur A D,Kneller B C,Souza P A,Kuchle J.2016. Characterization of deep-marine channel-levee complex architecture with palynofacies: an outcrop example from the Rosario Formation,Baja California,Mexico.Marine and Petroleum Geology, 73: 157-173. [33] Mutti E,Normark W R.1987. Comparing examples of modern and ancient turbidite systems: problems and concepts.In: Leggett J K,Zuffa G G(eds).Marine Clastic Sedimentology: Concepts and Case Studies.Springer.Netherlands,1-38. [34] Xian B Z,Liu J P,Dong Y L,Lu Z Y,He Y X,Wang J H.2017. Classification and facies sequence model of subaqueous debris flows. Acta Geologica Sinica(English Edition), 91(2): 751-752. [35] Zhang J J,Wu S H,Hu G Y,Fan T E,Yu B,Lin P,Jiang S N,2018. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin.Marine and Petroleum Geology, 94: 179-197.