Principles of tectonic-depositional differentiation and its geological significance
HE Dengfa1, BAO Hongping2, GAO Shanlin3, LI Di1
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083, China; 2 Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi'an 710018,China;; 3 Petroleum Exploration and Production Branch of SINOPEC,Beijing 100728,China;
Abstract The tectonic-depositional differentiation is a common phenomenon on the Earth surface. It takes place in the lithospheric components such as sedimentary basins,orogenic belts,and cratons. Sediments,fluids,energy,and forces are always changing and differentiating with each other on shallow,intermediate,and deep layers of the lithosphere. From a view of the material composition,spatio-temporal distribution,and mechanic processes,the paper discusses basic features of the tectonic-depositional differentiation in detail,taking the Chinese sedimentary basins as an example. It is defined as geomorphic differences on the Earth surface,which result from tectonic,thermal,gravitational processes,and mantle dynamics,which give rise to the variations in source,routing system,and deposition and fill. It takes place on variable scales that ranges from ocean-continent,basin-orogenic belt,uplift-sag,high-depression systems,to high-and-low relief geomorphic systems. The basement framework,strength,and moving style have marked controls upon the different scale of differentiation. The tectonic stress,gravitation,thermal stress,and mantle dynamics control the differential mechanisms. It exhibits the differentiation cycle with the geological evolution,transforming from rifts and depressions during the extension period into uplifts and sags during the compression period,especially for carbonate platforms changing from the rifted differential platform to the compressive unified platform. All these factors and mechanisms can be interlinked and play roles altogether in the geological spatio-temporal framework,giving multi-varied tectonic-depositional processes. It is a key basis to reconstruct the earth history,to boost the exploration of the ore deposits and resources,and to improve the habitable environments for humankind.
Fund:Co-funded by the United Foundation Project of the National Natural Science Foundation of China for Company Innovation and Development(No. U19B6003),and the Project of Tackling the Science and Technological Key Problems in PetroChina Changqing Oil and Gas Field Company(No. ZDZX2021-01)
About author: HE Dengfa,born in 1967,graduated from the Geology Department, Northwest University in 1989, is currently a professor in School of Energy and Resources,China University of Geosciences (Beijing). He is engaged in basin structures and tectonics,and integrated studies on petroleum geology. E-mail: Hedengfa282@263.net.
Cite this article:
HE Dengfa,BAO Hongping,GAO Shanlin et al. Principles of tectonic-depositional differentiation and its geological significance[J]. JOPC, 2022, 24(5): 920-936.
HE Dengfa,BAO Hongping,GAO Shanlin et al. Principles of tectonic-depositional differentiation and its geological significance[J]. JOPC, 2022, 24(5): 920-936.
[1] 包洪平,邵东波,郝松立,章贵松,阮正中,刘刚,欧阳征健. 2019. 鄂尔多斯盆地基底结构及早期沉积盖层演化. 地学前缘, 26(1): 33-43. [Bao H P,Shao D B,Hao S L,Zhang G S,Ruan Z Z,Liu G,Ouyang Z J.2019. Structure of basement and evolution of early sedimentary cover of Ordos Basin. Earth Science Frontiers, 26(1): 33-43] [2] 包洪平,郭玮,刘刚,李磊,武春英,白海峰. 2020. 鄂尔多斯地块南缘构造演化及其对盆地腹部的构造-沉积分异的效应. 地质科学, 55(3): 703-725. [Bao H P,Guo W,Liu G,Li L,Wu C Y,Bai H F.2020. Tectonic evolution in the southern Ordos block and its significance in the tectono-depositional differentiation in the interior of the Ordos Basin. Chinese Journal of Geology, 55(3): 703-725] [3] 陈国达,彭省临,戴塔根. 2005. 亚洲大陆中部壳体东、西部历史—动力学的构造分异及其意义. 大地构造与成矿学, 29(1): 7-16. [Chen G D,Peng S L,Dai T G.2005. Historistic-dynamic tectonic differentiation of E-W of central Asia continental crust body and its significance. Geotectonica et Metallogenia, 29(1): 7-16] [4] 陈洪德,侯明才,林良彪,钟怡江,张成弓,隆轲. 2010. 不同尺度构造—层序岩相古地理研究思路与实践. 沉积学报, 28(5): 894-903. [Chen H D,Hou M C,Lin L B,Zhong Y J,Zhang C G,Long K.2010. Research idea and practice of tectonic-sequence lithofacies paleogeographic in diverse scales. Acta Sedimentologica Sinica, 28(5): 894-903] [5] 陈槚俊,何登发,孙方源,田方磊. 2021. 塔北隆起晚奥陶世—中泥盆世古隆起格局演变. 石油与天然气地质, 42(2): 285-298. [Chen J J,He D F,Sun F Y,Tian F L.2021. Framework evolution of North Tarim Paleo-uplift from the Late Ordovician to Middle Devonian. Oil & Gas Geology, 42(2): 285-298] [6] 董树文,张岳桥,陈宣华,龙长兴,王涛,杨振宇,胡健民. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317. [Dong S W,Zhang Y Q,Chen X H,Long C X,Wang T,Yang Z Y,Hu J M.2008. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317] [7] 董云鹏,张国伟,孙圣思,张菲菲,何登峰,孙娇鹏,柳小明,杨钊,程斌,慧博,岳远刚,周波,程超,杨子强,史小辉,龙晓平. 2019. 中国大陆“十字构造”形成演化及其大陆动力学意义. 地质力学学报, 25(5): 769-797. [Dong Y P,Zhang G W,Sun S S,Zhang F F,He D F,Sun J P,Liu X M,Yang Z,Cheng B,Hui B,Yue Y G,Zhou B,Cheng C,Yang Z Q,Shi X H,Long X P.2019. The “cross-tectonics” in China continent: formation,evolution,and its significance for continental dynamics. Journal of Geomechanics, 25(5): 769-797] [8] 关士聪,演怀玉,陈显群. 1984. 中国海陆变迁海域沉积相与油气: 晚元古代—三叠纪. 北京: 科学出版社. [Guan S C,Yan H Y,Chen X Q.1984. Land and Sea Shift,Marine Facies,Oil and Gas in China. Beijing: Science Press] [9] 何登发,李德生. 1996. 塔里木盆地构造演化与油气聚集. 北京: 地质出版社,1-167. [He D F,Li D S.1996. Tectonic Evolution and Hydrocarbon Accumulation in Tarim Basin. Beijing: Geological Publishing House,1-167] [10] 何登发,贾承造,李德生,张朝军,孟庆任,石昕. 2005. 塔里木多旋回叠合盆地的形成与演化. 石油与天然气地质, 26(1): 64-79. [He D F,Jia C Z,Li D S,Zhang C J,Meng Q R,Shi X.2005. Formation and evolution of polycyclic superimposed Tarim Basin. Oil & Gas Geology, 26(1): 64-79] [11] 何登发,周新源,张朝军,阳孝法. 2007. 塔里木地区奥陶纪原型盆地类型及其演化. 科学通报,52(增刊1): 126-135. [He D F,Zhou X Y,Zhang C J,Yang X F.2007. Tectonic types and evolution of Ordovician proto-type basins in the Tarim region. Chinese Science Bulletin,52(supplement 1): 126-135] [12] 何登发,李德生,童晓光,赵文智. 2008. 多期叠加盆地古隆起控油规律. 石油学报, 29(4): 475-488. [He D F,Li D S,Tong X G,Zhao W Z.2008. Accumulation and distribution of oil and gas controlled by paleo-uplift in poly-history superimposed basin. Acta Petrolei Sinica, 29(4): 475-488] [13] 何登发,李德生,张国伟,赵路子,樊春,鲁人齐,文竹. 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. [He D F,Li D S,Zhang G W,Zhao L Z,Fan C,Lu R Q,Wen Z.2011. Formation and evolution of multi-cycle superimposed Sichuan Basin,China. Chinese Journal of Geology, 46(3): 589-606] [14] 何登发,李德生,王成善. 2015. 一张相图引发的奇迹: 论活动论构造—古地理. 地质科学, 50(2): 391-409. [He D F,Li D S,Wang C S.2015. Miracles due to one sedimentary facies map: on mobilistic tectono-paleogeography. Chinese Journal of Geology, 50(2): 391-409] [15] 何登发,马永生,蔡勋育,刘波,张健,张义杰. 2017. 中国西部海相盆地地质结构控制油气分布的比较研究. 岩石学报, 33(4): 1037-1057. [He D F,Ma Y S,Cai X Y,Liu B,Zhang J,Zhang Y J.2017. Comparison study on controls of geologic structural framework upon hydrocarbon distribution of marine basins in western China. Acta Petrolei Sinica, 33(4): 1037-1057] [16] 何登发,包洪平,孙方源,张才利,开百泽,许艳华,成祥,翟咏荷. 2020. 鄂尔多斯盆地中央古隆起的地质结构与成因机制. 地质科学, 55(3): 627-656. [He D F,Bao H P,Sun F Y,Zhang C L,Kai B Z,Xu Y H,Cheng X,Zhai Y H.2020. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin. Chinese Journal of Geology, 55(3): 627-656] [17] 何登发,包洪平,开百泽,魏柳斌,许艳华,马静辉,成祥. 2021. 鄂尔多斯盆地及其邻区关键构造变革期次及其特征. 石油学报,42(10): 1255-1269. [He D F,Bao H P,Kai B Z,Wei L B,Xu Y H,Ma J H,Cheng X.2021. Critical tectonic modification periods and its geologic features of Ordos Basin and adjacent area. Acta Petrolei Sinica, 42(10): 1255-1269] [18] 侯明才,邢凤存,徐胜林,林良彪,刘欣春,熊富浩,黄虎. 2017. 上扬子E-C转换期古地理格局及其地球动力学机制探讨. 沉积学报, 35(5): 902-917. [Hou M C,Xing F C,Xu S L,Lin L B,Liu X C,Xiong F H,Huang H.2017. Paleogeo-graphic patterns of E-C transition period in the Upper Yangtze and the geodynamic mechanism. Acta Sedimentologica Sinica, 35(5): 902-917] [19] 贾承造,魏国齐,李本亮,肖安成,冉启贵. 2003. 中国中西部两期前陆盆地的形成及其控气作用. 石油学报, 24(2): 13-17. [Jia C Z,Wei G Q,Li B L,Xiao A C,Ran Q G.2003. Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China's mid-western areas. Acta Petrolei Sinica, 24(2): 13-17] [20] 贾承造,魏国齐,李本亮. 2005. 中国中西部小型克拉通盆地群的叠合复合性质及其含油气系统. 高校地质学报, 11(4): 479-492. [Jia C Z,Wei G Q,Li B L.2005. Superimposed-composite characteristics of micro-craton basins and its bearing petroleum systems,central-western China. Geological Journal of China Universities, 11(4): 479-492] [21] 贾承造,李本亮,雷永良,陈竹新. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学: 地球科学, 43: 1621-1631. [Jia C Z,Li B L,Lei Y L,Chen Z X.2013. The structure of the Circum-Tibetan Plateau Basin-Range System and the large gas provinces. Science China: Earth Sciences, 56: 1853-1863] [22] 贾承造. 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1-11. [Jia C Z.2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory. Petroleum Exploration and Development, 44(1): 1-11] [23] 李德生. 1982. 中国含油气盆地的构造类型. 石油学报, 3(3): 5-16. [Li D S.1982. Tectonic types of oil and gas basins in China. Acta Petrolei Sinica, 3(3): 5-16] [24] 李江海,姜洪福. 2013. 全球古板块再造、岩相古地理及古环境图集. 北京: 地质出版社. [Li J H,Jiang H F.2013. World Atlas of Plate Tectonic Reconstruction,Lithofacies Paleogeography and Plaeoenvironment. Beijing: Geological Publishing House] [25] 李皎,何登发. 2014. 四川盆地及邻区寒武纪古地理与构造-沉积环境演化. 古地理学报, 16(4): 441-460. [Li J,He D F.2014. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition), 16(4): 441-460] [26] 李思田. 2006. 活动论构造古地理与中国大型叠合盆地海相油气聚集研究. 地学前缘, 13(6): 22-29. [Li S T.2006. Mobilistic tectono-paleogeography and marine hydrocarbon accumulation in superimposed basins in China. Earth Science Frontier, 13(6): 22-29] [27] 梁霄,李香华,徐剑良,何嘉,韩友平,崔健,李郭琴,寇一龙. 2021a. 从优质烃源岩到储层: 构造-沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景. 天然气工业, 41(5): 30-41. [Liang X,Li X H,Xu J L,He J,Han Y P,Cui J,Li G Q,Kou Y L.2021a. Exploration prospects of Lower Cambrian shale gas in the central-western Sichuan Basin under the pattern of tectonic-depositional differentiation: from high-quality source rocks to reservoirs. Natural Gas Industry, 41(5): 30-41] [28] 梁霄,徐剑良,王滢,方焰心,赵磊,伍翊嘉,邓宾. 2021b. 川南地区渐变型盆—山边界条件下龙马溪组页岩气(藏)富集主控因素: 构造-沉积分异与差异性演化. 地质科学, 56(1): 60-81. [Liang X,Xu J L,Wang Y,Fang Y X,Zhao L,Wu Y J,Deng B.2021b. The shale gas enrichment factors of Longmaxi Formation under gradient basin-mountain boundary in south Sichuan Basin: tectono-depositional differentiation and discrepant evolution. Chinese Journal of Geology, 56(1): 60-81] [29] 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Ling C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontier, 22(1): 9-20] [30] 刘和甫,李景明,李晓清,刘立群,李晓军,胡少华. 2006. 中国克拉通盆地演化与碳酸盐岩—蒸发岩层序油气系统. 现代地质, 20(1): 1-18. [Liu H F,Li J M,Li X Q,Liu L Q,Li X J,Hu S H.2006. Evolution of cratonic basins and carbonate-evaporite sedimentary sequence hydrocar-bon systems in China. Geoscience, 20(1): 1-18] [31] 刘树根,孙玮,罗志立,宋金民,钟勇,田艳红,彭瀚霖. 2013. 兴凯地裂运动与四川盆地下组合油气勘探. 成都理工大学学报(自然科学版), 40(5): 511-520. [Liu S G,Sun W,Luo Z L,Song J M,Zhong Y,Tian Y H,Peng H L.2013. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 40(5): 511-520] [32] 刘树根,王一刚,孙玮,钟勇,洪海涛,邓宾,夏茂龙,宋金民,文应初,吴娟. 2016. 拉张槽对四川盆地海相油气分布的控制作用. 成都理工大学学报(自然科学版), 43(1): 1-23. [Liu S G,Wang Y G,Sun W,Zhong Y,Hong H T,Deng B,Xia M L,Song J M,Wen Y C,Wu J.2016. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 43(1): 1-23] [33] 刘树根,孙玮,钟勇,邓宾,宋金民,冉波,罗志立,韩克猷. 2017. 四川海相克拉通盆地显生宙演化阶段及其特征. 岩石学报, 33(4): 1058-1072. [Liu S G,Sun W,Zhong Y,Deng B,Song J M,Ran B,Luo Z L,Han K Y.2017. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon,China. Acta Petrologica Sinica, 33(4): 1058-1072] [34] 刘树根,刘殊,孙玮,宋金民,冉波,钟勇,叶玥豪,蒋能春,夏国栋. 2018. 绵阳—长宁拉张槽北段构造-沉积特征. 成都理工大学学报(自然科学版), 45(1): 1-13. [Liu S G,Liu S,Sun W,Song J M,Ran B,Zhong Y,Ye Y H,Jiang N C,Xia G D.2018. Tectonic and sedimentary features of the northern Mianyang-Changning intracratonic sag,Sichuan,China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(1): 1-13] [35] 马永生. 2007. 中国海相油气勘探. 北京: 科学出版社,1-300. [Ma Y S.2007. Marine Petroleum Exploration of China. Beijing: Science Press,1-300] [36] 马永生,牟传龙,郭彤楼,谭钦银,余谦. 2005. 四川盆地东北部长兴组层序地层与储层分布. 地学前缘, 12(3): 179-185. [Ma Y S,Mu C L,Guo T L,Tan Q Y,Yu Q.2005. Sequence stratigraphy and reservoir distribution of the Changxing Formation in northeastern Sichuan Basin. Earth Science Frontiers, 12(3): 179-185] [37] 马永生,陈洪德,王国力. 2009. 中国南方构造—层序岩相古地理图集. 北京: 科学出版社. [Ma Y S,Chen H D,Wang G L.2009. Atlas of Construction-sequence and Lithofacies Paleogeography in South of China. Beijing: Science Press] [38] 邵东波,包洪平,魏柳斌,蔡郑红, 武春英, 周黎霞, 曹岩刚. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556. [Shao D B,Bao H P,Wei L B,Cai Z H,Wu C Y,Zhou L X,Cao Y G.2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556] [39] 邵龙义,王学天,李雅楠,李炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 67-81. [Shao L Y,Wang X Y,Li Y N,Li B Q.2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography(Chinese Edition), 21(1): 67-81] [40] 孙枢. 2005. 活动论古地理研究进展评述. 矿物岩石地球化学通报, 24(增): 355-356. [Sun S.2005. Progress review of mobilism palaeogeography construction. Bulletin of Mineralogy Petrology and Geochemistry, 24(suppl.): 355-356] [41] 万天丰. 1993. 中国东部中新生代板内变形构造应力场及其应用. 北京: 地质出版社,1-103. [Wan T F.1993. Tectonic Stress Field of Meso Cenozoic Intraplate Deformation in Eastern China and Its Application. Beijing: Geological Publishing House,1-103] [42] 万天丰,朱鸿. 2007. 古生代与三叠纪中国各陆块在全球古大陆再造中的位置与运动学特征. 现代地质, 21(1): 1-13. [Wan T F,Zhu H.2007. Positions and kinematics of Chinese continental blocks in reconstruction of global paleo-continents for Paleozoic and Triassic. Geoscience, 21(1): 1-13] [43] 王成善,郑和荣,冉波,刘本培,李祥辉,李亚林,孙红军,陈建平,胡修棉. 2010. 活动古地理重建的实践与思考. 沉积学报, 28(5): 849-860. [Wang C S,Zheng H R,Ran B,Liu B P,Li X H,Li Y L,Sun H J,Chen J P,Hu X M.2010. On paleogeographic reconstruction: an example for application in Tibetan Tethys. Acta Sedimentologica Sinica, 28(5): 849-860] [44] 王二七. 2004. 山盆耦合的一种重要形式: 造山带及其侧陆盆地. 科学通报, 49(4): 370-374. [Wang E Q.2004. One important type of orogen-basin coupling: orogen and its lateral basins. Science Bulletin, 49(4): 370-374] [45] 王鸿桢,杨式溥,朱鸿. 1990. 中国及邻区古生代生物古地理及全球古大陆再造. 武汉: 中国地质大学出版社. [Wang H Z,Yang S P,Zhu H.1990. Tectonopalaeogeography and Palaeobiogeography of China and Adjacent Regions. Wuhan: China University of Geosciences Press] [46] 汪泽成,姜华,王铜山,鲁卫华,谷志东,徐安娜. 2014. 四川盆地桐湾期古地貌特征及成藏意义. 石油勘探与开发, 41(3): 305-312. [Wang Z C,Jiang H,Wang T S,Lu W H,Gu Z D,Xu A N.2014. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Petroleum Exploration and Development, 41(3): 305-312] [47] 汪泽成,赵文智,胡素云,徐安娜,江青春,姜华,黄士鹏,李秋芬. 2017. 拉通盆地构造分异对大油气田形成的控制作用: 以四川盆地震旦系—三叠系为例. 天然气工业, 37(1): 9-23. [Wang Z C,Zhao W Z,Hu S Y,Xu A N,Jiang Q C,Jiang H,Huang S P,Li Q F.2017. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins: a case study of Sinian-Triassic of the Sichuan Basin. Natural Gas Industry, 37(1): 9-23] [48] 魏柳斌,陈洪德,郭玮,严婷,蔡郑红,周黎霞. 2021. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用. 石油与天然气地质, 42(2): 391-400,521. [Wei L B,Chen H D,Guo W,Yan T,Cai Z H,Zhou L X.2021. Wushen-Jingbian paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin. Oil & Gas Geology, 42(2): 391-400,521] [49] 邢凤存,侯明才,林良彪,徐胜林,胡华蕊. 2015. 四川盆地晚震旦世—早寒武世构造运动记录及动力学成因讨论. 地学前缘, 22(1): 115-125. [Xing F C,Hou M C,Lin L B,Xu S L,Hu H R.2015. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin. Earth Science Frontiers, 22(1): 115-125] [50] 徐长贵. 2013. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11. [Xu C G.2013. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea,conceptual systems and controlling sand models. China Offshore Oil and Gas, 25(4): 1-11] [51] 徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应. 地学前缘, 9(4): 341-353. [Xu Y G.2002. Mantle plumes,large igneous provinces and their geologic consequences. Earth Science Frontiers, 9(4): 341-353] [52] 许志琴,王勤,孙卫东,李忠海. 2018. 地球的层圈结构与穿越层圈构造. 地质论评, 64(2): 261-282. [Xu Z Q,Wang Q,Sun W D,Li Z H.2018. The spherical structure of the Earth and across-sphere tectonics. Geological Review, 64(2): 261-282] [53] 杨文采,曾祥芝. 2020. 认知地球物质运动的大陆动力学方法. 地质论评, 66(1): 1-12. [Yang W C,Zeng X Z.2020. Continental dynamics with cognition of Earth matter movement. Geological Review, 66(1): 1-12] [54] 余谦,牟传龙,张海全,谭钦银,许效松,闫剑飞. 2011. 上扬子北缘震旦纪—早古生代沉积演化与储层分布特征. 岩石学报, 27(3): 672-680. [Yu Q,Mou C L,Zhang H Q,Tan Q Y,Xu X S,Yan J F.2011. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic. Acta Petrologica Sinica, 27(3): 672-680] [55] 张春林,张福东,朱秋影. 2017. 鄂尔多斯克拉通盆地寒武纪: 古构造与岩相古地理再认识. 石油与天然气地质, 38(2): 281-291. [Zhang C L,Zhang F D,Zhu Q Y. New understanding of the Cambrian palaeotectonic and lithofacies palaeogeography in the Ordos Craton Basin. Oil & Gas Geology, 38(2): 281-291] [56] 张光亚,童晓光,辛仁臣,温志新,马锋,黄彤飞,王兆明. 2019a. 全球岩相古地理演化与油气分布(一). 石油勘探与开发, 46(4): 633-652. [Zhang G Y,Tong X G,Xin R C,Wen Z X,Ma F,Huang T F,Wang Z M.2019a. Evolution of lithofacies and paleogeography and hydrocarbon distribution worldwide(I). Petroleum Exploration and Development, 46(4): 633-652] [57] 张光亚,童晓光,辛仁臣,温志新,马锋,黄彤飞,王兆明. 2019b. 全球岩相古地理演化与油气分布(二). 石油勘探与开发, 46(5): 848-868. [Zhang G Y,Tong X G,Xin R C,Wen Z X,Ma F,Huang T F,Wang Z M.2019b. Evolution of lithofacies and paleogeography and hydrocarbon distribution worldwide(Ⅱ). Petroleum Exploration and Development, 46(5): 848-868] [58] 张国伟,张本仁,袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社,1-855. [Zhang G W,Zhang B R,Yuan X C.2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press,1-855] [59] 张永生,郑绵平,包洪平,郭庆,于常青,邢恩袁,苏奎,樊馥,龚文强. 2013. 陕北盐盆马家沟组五段六亚段沉积期构造分异对成钾凹陷的控制. 地质学报, 87(1): 101-109. [Zhang Y S,Zheng M P,Bao H P,Guo Q,Yu C Q,Xing E Y,Su K,Fan F,Gong W Q.2013. Tectonic differentiation of O2m56 deposition stage in salt basin,northern Shaanxi,and its control over the formation of potassium sags. Acta Geologica Sinica, 87(1): 101-109] [60] 郑和荣,胡宗全. 2010. 中国前中生代构造岩相古地理图集. 北京: 地质出版社. [Zheng H R,Hu Z Q.2010. Chinese Pre Mesozoic Tectonic Lithofacies Paleogeography Atlas. Beijing: Geological Publishing House,2010] [61] 赵文智,汪泽成,胡素云,潘文庆,杨雨,包洪平,王红军. 2012. 中国陆上三大克拉通盆地海相碳酸盐岩油气藏大型化成藏条件与特征. 石油学报,33(增刊2): 1-10. [Zhao W Z,Wang Z C,Hu S Y,Pan W Q,Yang Y,Bao H P,Wang H J.2012. Large-scale hydrocarbon accumulation factors and characteristics of marine carbonate reservoirs in three large onshore cratonic basins in China. Acta Petrolei Sinica,33(S2): 1-10] [62] 周慧,李伟,张宝民,刘静江,邓胜徽,张师本,单秀琴,张静,王晓波,姜华. 2015. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化. 石油学报, 36(3): 310-323. [Zhou H,Li W,Zhang B M,Liu J J,Deng S H,Zhang S B,Shan X Q,Zhang J,Wang X B,Jiang H.2015. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin. Acta Petrolei Sinica, 36(3): 310-323] [63] 翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学: 地球科学, 41(8): 1037-1046. [Zhai M G.2011. Cratonization and the ancient North China continent: a summary and review. Science China: Earth Science, 41(8): 1037-1046] [64] 朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135-1159. [Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y.2012. Destruction of the North China Craton. Science China: Earth Science, 42(8): 1135-1159] [65] 朱夏. 1986. 论中国含油气盆地构造. 北京: 石油工业出版社,132. [Zhu X.1986. On Tectonics of Petroliferous Basins in China. Beijing: Petroleum Industry Press,132] [66] Allègre C J,Courtillat V,Tapponnier P,Hirn A,Mattauer M,Coulon C,Jaeger J J.1984. Structure and evolution of Himalaya-Tibet orogenic belt. Nature, 307: 17-22. [67] Cloetingh S A P L, TOPO-EUROPE Working Group.2007. TOPO-EUROPE: the geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 1: 1-118. [68] Dong H,Wei W,Ye G,Jin S,Jones A G,Jing J,Zhang L,Xie C,Zhang F,Wang H.2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: evidence of regional lithospheric modification. Geochem Geophys Geosyst, 15: 2414-2425. [69] Harrison T M,Copeland P,Kidd W S F,Yin A.1992. Raising Tibet. Science, 255: 1663-1670. [70] Huang H Y,He D F,Li D,Li Y Q.2021. Zircon U-Pb ages and Hf isotope analysis of Neoproterozoic Yaolinghe Group sedimentary rocks in the Chengkou area,South Qinling: provenance and paleogeographic implications. Precambrian Research, 355: 106088. [71] Heron P J.2019. Mantle plumes and mantle dynamics in the Wilson cycle. In: Wilson R W,Houseman G A,Mccaffrey K J W,Doré A G,Buiter S J H(eds).Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Geological Society,London,Special Publications,87-103. [72] Meng Q R,Zhou Z H,Zhu R X,Xu Y G,Guo Z T.2022. Cretaceous basin evolution in northeast Asia: tectonic responses to the paleo-Pacific plate subduction. National Science Review, 9(1): 1-18. [73] Naylor M,Sinclair H D.2008. Pro-versus retro-foreland basins. Basin Research, 20: 285-303. [74] Yao J L,Cawood P A,Zhao G C,Zhao G C,Han Y G,Xia X P,Liu Q,Wang P.2021. Mariana-typeophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. Nature Communications, 12(1): 1-10. [75] Yin A,Harrison T M.2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. [76] Zhang H,Huang Q,Zhao G,Guo Z,Chen Y J.2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: evidence for a mantle source of Datong volcanoes. Earth and Planetary Science Letters, 453: 182-192. [77] Zhang Y Q,He D F,Wu B,Gao H H.2021. Kinematic evolution of fold-and-thrust belts in the Yubei-Tangbei area: implications for tectonic events at the southern Tarim Basin. Geoscience Frontiers, 12(6): 101233. [78] Zhao G C,Wang Y J,Huang B C,Dong Y P,Li S Z,Zhang G W,Yu S.2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth Science Reviews, 186: 262-286. [79] Zhao G C,Cawood P A,Wilde S A.2002. A review of the global 2.1-1.8 Gaorogens: implications for a pre-Rodinia supercontinent. Earth Science Reviews, 59: 125-162.