Tectonic setting analysis of provenance area of the Permian Jiamuhe Formation on western slope of Shawan sag,Junggar Basin
WU Chenxiao1, YAO Zongquan2,3, DELEQIATI·Janatayi 2,3, DENG Gaoshan1, LI Tianming2,3, HAO Jia1, LIU Yu1, WANG Xiaohong1, SHUGELA·Mahaxi Xiaohong2,3
1 Research Institute of Exploration and Development,PetroChina Xinjiang Oilfield Company,Urümqi 830014,China; 2 School of Geology and Mining Engineering,Xinjiang University,Urümqi 830047,China; 3 Key Laboratory of Central Asian Orogenic Belts and Continental Dynamics,Urümqi 830047,China
Abstract It is very controversial on the provenance system and the depositional system of the Permian Jiamuhe Formation in Shawan sag of the Junggar Basin. In this paper,cluster analysis,multidimensional scaling analysis and principal component analysis were used to analyze the contents of heavy minerals and trace elements,and it was found that it is rich in quartz(35.41%),feldspar(43.2%)and poor in rock debris(18.71%)of conglomerate clastic particles in Permian Jiamuhe Formation in Shawan sag. The average value of rare elements equal 139×10-6,which is close to the average value in the continental upper crust(i.e.,148.14×10-6),the diagram of Hf-La/Th and La/Sc-Co/Th ratio indicate that the Jiamuhe Formation belongs to the acidic island arc region. The distribution pattern of REE shows a right-leaning distribution pattern,which is characterized as rich in LREE and poor in HREE,indicating that the source rocks are mainly feldspathic volcanic rocks. There are four provenance areas including Wells XG1-ZJ6 area,Wells CP10-ZH4-ZJ3 area,Wells CP10-CP005-CP26 area,and Well CP5 area. The discriminant diagram of tectonic setting reveals that the Jiamuhe Formation was formed in continental island arc environment. This study will be helpful for the reliable estimation of sedimentary system and ancient river system of the western slope area in Shawan sag and the accurate prediction of oil and gas reservoirs in prospective areas.
Fund:Co-funded by the National Natural Science Foundation of China Youth Fund(No.41902109)and Tianshan Youth Program of Xinjiang Uygur Autonomous Region(No.2020Q064)
Corresponding Authors:
YAO Zongquan,born in 1989,graduated from China University of Geosciences(Beijing) in 2018 with his docteral degree. Now he is an associate professor and doctoral supervisor, and is mainly engaged in reservoir sedimentology. E-mail: yzq@xju.edu.cn.
About author: WU Chenxiao,born in 1990,graduated from China University of Petroleum(Beijing)in 2016 with his masteral degree. Now he is mainly engaged in comprehensive geological work. E-mail: wchenxiao@petroChina.com.cn.
Cite this article:
WU Chenxiao,YAO Zongquan,DELEQIATI·Janatayi et al. Tectonic setting analysis of provenance area of the Permian Jiamuhe Formation on western slope of Shawan sag,Junggar Basin[J]. JOPC, 2022, 24(6): 1149-1161.
WU Chenxiao,YAO Zongquan,DELEQIATI·Janatayi et al. Tectonic setting analysis of provenance area of the Permian Jiamuhe Formation on western slope of Shawan sag,Junggar Basin[J]. JOPC, 2022, 24(6): 1149-1161.
[1] 蔡忠贤,陈发景,贾振远. 2000. 准噶尔盆地的类型和构造演化. 地学前缘, 7(4): 431-440. [Cai Z X,Chen F J,Jia Z Y. 2000. Types and tectonic evolution of Jungger Basin. Earth Science Frontiers,7(4): 431-440] [2] 杜远生. 2018. 关于古流分析的讨论. 古地理学报, 20(5): 925-926. [Du Y S. 2018. Discussion on palaeocurrent analysis. Journal of Palaeogeography(Chinese Edition), 20(5): 925-926] [3] 甘资先,周方俊,肖奕. 1991. 多维尺度分析中的算法研究. 清华大学学报(自然科学版), 31(6): 20-27. [Gan Z X,Zhou F J,Xiao Y. 1991. Algorithm research in multidimensional scaling analysis. Journal of Tsinghua University(Science and Technology),31(6):20-27] [4] 关新,潘树新,曲永强,许多年,张寒,马永平,王国栋,陈雪珍. 2021. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力. 岩性油气藏, 33(1): 90-98. [Guan X,Pan S X,Qu Y Q,Xu D N,Zhang H,Ma Y P,Wang G D,Chen X Z. 2021. Discovery and hydrocarbon exploration potential of beach-bar sand in Shawan sag,Junggar Basin. Lithologic Reservoirs, 33(1): 90-98] [5] 贺开放. 2018. 基于多维尺度和神经网络的电力电子电路故障诊断方法. 合肥工业大学硕士学位论文. [He K F. 2018. A method for fault diagnosis based on multidimensional scaling and neural network in power electronic circuit. Masteral dissertation of Hefei University of Technology] [6] 姜龙杰,孙志鹏,翟世奎,刘新宇,尤丽,曹佳琪,张爱滨,毕东杰,张婉. 2018. 琼东南盆地深水区钻井岩屑稀土元素地球化学特征及其对沉积物源和环境的指示. 海洋科学, 42(4): 89-100. [Jiang L J,Sun Z P,Zhai S K,Liu X Y,You L,Cao J Q,Zhang A B,Bi D J,Zhang W. 2018. The sedimentary environment and provenance analysis based on geochemical characteristics of rare-earth elements in deepwater well core of the Qiongdongnan Basin. Marine Science, 42(4): 89-100] [7] 李二庭,靳军,王剑,马万云,陈世加,刘翠敏,王海静. 2022. 准噶尔盆地沙湾凹陷周缘中,浅层天然气地球化学特征及成因. 石油与天然气地质, 43(1): 175-185. [Li E T,Jin J,Wang J,Ma W Y,Chen S J,Liu C M,Wang H J. 2022. Geochemical characteristics and genesis of mid-to-shallow natural gas on the periphery of Shawan sag,Junggar Basin. Oil & Gas Geology, 43(1): 175-185] [8] 李国欣,覃建华,鲜成钢,范希彬,张景,丁艺. 2020. 致密砾岩油田高效开发理论认识、关键技术与实践: 以准噶尔盆地玛湖油田为例. 石油勘探与开发, 47(6): 1185-1197. [Li G X,Qin J H,Xian C G,Fan X B,Zhang J,Ding Y. 2020. Theoretical understandings,key technologies and practices of tight conglomerate oilfield efficient development: a case study of the Mahu oilfield,Junggar Basin,NW China. Petroleum Exploration and Development, 47(6): 1185-1197] [9] 李勇,路俊刚,刘向君,王剑,陈世加,何清波. 2022. 准噶尔盆地沙湾凹陷烃源岩地球化学特征及天然气勘探方向. 天然气地球科学: 33(8): 1319-1331. [Li Y,Lu J G,Liu X J,Wang J,Chen S J,He Q B. 2022. Geochemical characteristics of source rocks and gas exploration direction in Shawan sag,Junggar Basin. Natural Gas Geoscience, 33(8): 1319-1331] [10] 李涤. 2016. 准噶尔盆地及邻区石炭纪构造格架与沉积充填演化. 中国地质大学(北京)博士论文. [Li D. 2016. Carboniferous tectonic framework and sedimentary filling evolution in the Junggar Basin and adjacent area,NW China. Doctoral dissertation of China University of Geosciences(Beijing)] [11] 梁宇生,何登发,甄宇,张磊,田爱军. 2018. 准噶尔盆地沙湾凹陷构造—地层层序与盆地演化. 石油与天然气地质, 39(5): 943-954. [Liang Y S,He D F,Zhen Y,Zhang L,Tian A J. 2018. Tectono-stratigraphic sequence and basin evolution of Shawan sag in the Junggar Basin. Oil & Gas Geology, 39(5): 943-954] [12] 路玉. 2018. 玛湖—沙湾地区二叠系年代—地层格架与沉积充填演化. 中国地质大学(北京)硕士论文. [Lu Y. 2018. Permian chronostratigraphic framework and sedimentary filling evolution in Mahu-Shawan and adjacent area,Junggar Basin. Masteral dissertion of China University of Geosciences(Beijing)] [13] 宋凯,吕剑文,杜金良,王宏科. 2002. 鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系. 古地理学报, 4(3): 59-66. [Song K,Lü J W,Du J L,Wang H K. 2002. Source direction analysis and delta depositional system of Yanchang Formation of the Upper Triassic in the central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 4(3): 59-66] [14] 田豹,李维峰,祁腾飞,汪洋,杨家义. 2017. 重矿物物源分析研究进展. 中国锰业, 35(1): 107-109,115. [Tian B,Li W F,Qi T F,Wang Y,Yang J Y. 2017. A research progress in provenance analysis of heavy minerals. China Manganese Industry, 35(1): 107-109,115] [15] 田洋,赵小明,王令占,涂兵,谢国刚,曾波夫. 2015. 鄂西南利川三叠纪须家河组地球化学特征及其对风化,物源与构造背景的指示. 岩石学报, 31(1): 261-272. [Tian Y,Zhao X M,Wang L Z,Tu B,Xie G G,Zeng B F. 2015. Geochemistry of clastic rocks from the Triassic Xujahe Formation,Lichuan area,southwestern Hubei: implications for weathering,provenance and tectonic setting. Acta Petrologica Sinica, 31(1): 261-272] [16] 王建刚,胡修棉,黄志诚. 2008. 藏南桑单林地区晚白垩世—始新世砂岩物源区分析. 地质学报, 82(1): 92-103. [Wang J G,Hu X M,Huang Z C. 2008. Provenance analysis of Late Cretaceous-Early Eocene sandstones in the Sangdanlin Area,Southern Tibet. Acta Geologica Sinica, 82(1): 92-103] [17] 王骏,王士同,邓赵红. 2012. 聚类分析研究中的若干问题. 控制与决策, 27(3): 321-328. [Wang J,Wang S T,Deng Z H. 2012. Survey on challenges in clustering analysis research. Control and Decision, 27(3): 321-328] [18] 吴庆福. 1986. 准噶尔盆地发育阶段、构造单元划分及局部构造成因概论. 新疆石油地质, 7(1): 29-37. [Wu Q F. 1986. Development stage,division of tectonic units and local tectonic genesis theory of Junggar Basin. Xinjiang Petroleum Geology, 7(1): 29-37] [19] 吴松涛,梁宇生,张磊,田爱军. 2018. 沙湾凹陷与盆1井西凹陷构造过渡关系及地质意义. 新疆石油地质, 39(3): 277-284. [Wu S T,Liang Y S,Zhang L,Tian A J. 2018. Tectonic transition relationship between Shawan sag and western Well Pen-1 sag and its geological significance. Xinjiang Petroleum Geology, 39(3): 277-284] [20] 武赛军,尹太举,马晋文,毛丹风,翟长青,柯钦. 2012. 地球物理方法在沉积物源分析中的应用. 长江大学学报(自然科学版):9(1): 59-61. [Wu S J,Yin T J,Ma J W,Mao D F,Qu C Q,Ke Q. 2012. Application of geophysical methods in sediment source analysis. Journal of Yangtze University(Natural Science Edition), 9(1): 59-61] [21] 肖芳锋,侯贵廷,王延欣,李乐. 2010. 准噶尔盆地及周缘二叠纪以来构造应力场解析. 北京大学学报(自然科学版), 46(2): 224-230. [Xiao F F,Hou G T,Wang Y X,Li L. 2010. Study on structural stress fields since Permian,Junggar Basin and adjacent areas. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 224-230] [22] 熊婷,党玉芳,贾春明,李胜,尚春. 2021. 扇三角洲高分辨率层序构型及砂体预测: 以沙湾凹陷西斜坡二叠系上乌尔禾组为例. 西安石油大学学报(自然科学版), 36(3): 16-22. [Xiong T,Dang Y F,Jia C M,Li S,Shang C. 2021. High-resolution sequence architecture and sandbody distribution prediction of fan delta: a case study of Upper Wuerhe Formation of Permian in West Slope of Shawan sag. Journal of Xi'an Shiyou University, 36(3): 16-22] [23] 许苗苗,魏晓椿,杨蓉,王平,程晓敢. 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154-171. [Xu M M,Wei X C,Yang R,Wang P,Cheng X G. 2021. Research progress of provenance tracing method for heavy mineral analysis. Advances in Earth Science, 36(2): 154-171] [24] 徐杰,姜在兴. 2019. 碎屑岩物源研究进展与展望. 古地理学报, 21(3): 379-396. [Xu J,Jiang Z X. 2019. Provenance analysis of clastic rocks: current research status and prospect. Journal of Palaeogeography(Chinese Edition), 21(3): 379-396] [25] 余海涛,刘新宇,吴博闻,刘鑫铭. 2020. 准噶尔盆地西北缘沙湾凹陷上乌尔禾组大型扇三角洲控制因素. 新疆地质, 38(1): 71-76. [Yu H T,Liu X Y,Wu B W,Liu X M. 2020. Large fan delta control factors of Upper Wuerhe Formation of Shawan sag in Northwest Margin of Junggar Basin. Xinjiang Geology, 38(1): 71-76] [26] 赵红格,刘池洋. 2003. 物源分析方法及研究进展. 沉积学报, 21(3): 409-415. [Zhao H G,Liu C Y. 2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica, 21(3): 409-415] [27] 赵加凡,陈小宏. 2005. 基于主成分分析与K-L变换的双重属性优化方法. 物探与化探, 29(3): 67-70. [Zhao J F,Chen X H. 2005. Dual optimization of seismic attributes based on principal component analysis and K-L transform. Geophysical and Geochemical Exploration, 29(3): 67-70] [28] 邹志文,李辉,徐洋,余朝丰,梦祥超. 2015. 准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征. 地质科技情报, 34(2): 20-26. [Zhou Z W,Li H,Xu Y,Yu C F,Meng X C. 2015. Sedimentary characteristics of the Baikouquan Formation,Lower Triassic in the Mahu Depression,Junggar Basin. Geological Science and Technology Information, 34(2): 20-26] [29] Aitchison J A. 1983. Principal component analysis of compositional data. Biometrika, 70(1): 57. [30] Aléon J,Chaussidon M,Marty B,Schütz L,Jaenicke R. 2002. Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica et Cosmochimica Acta, 66(19): 3351-3365. [31] Barbara,Carrapa.2010. Resolving tectonic problems by dating detrital minerals. Geology, 38(2): 191-192. [32] Bhatia M R,Crook K. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy & Petrology, 92(2): 181-193. [33] Blum M D,Milliken K T,Pecha M A,Snedden J W,Galloway W E. 2017. Detrital-Zircon records of Cenomanian,Paleocene,and Oligocene Gulf of Mexico drainage integration and sediment routing: implications for scales of basin-floor fans. Geosphere, 13(6): 2169-2205. [34] Burt R B C. 1958. Theory and methods of scaling. Biometrika, 46(3-4): 493. [35] Carroll A R,Liang Y,Graham S A,Xiao X,Hendrix M S,Chu J,Mcknight C L. 1990. Junggar Basin,Northwest China: trapped Late Paleozoic Ocean. Tectonophysics, 181(1-4): 1-14. [36] Dickinson W R. 1988. Provenance and Sediment Dispersal in Relation to Paleotectonics and Paleogeography of Sedimentary Basins. Springer, New York. [37] Jiang T,Cao L,Xie X,Wang Z,Li X,Zhang Y,Zhang D,Sun H. 2015. Insights from heavy minerals and Zircon U-Pb ages into the Middle Miocene-Pliocene provenance evolution of the Yinggehai Basin,northwestern South China Sea. Sedimentary Geology,327(AUG.15): 32-42. [38] Kleinspehn K L,Paola C. 1988. New Perspectives in Basin Analysis. Springer, New York. [39] Kruskal J B. 1964. Nonmetric multidimensional scalling: a numerical method. Psychometrika,29:115-129. [40] Mclennan S M,Hemming S R,Taylor S R,Eriksson K A. 1995. Early Proterozoic crustal evolution: geochemical and Nd Pb isotopic evidence from metasedimentary rocks,southwestern north america. Geochimica Et Cosmochimica Acta, 59(6): 1153-1177. [41] Morton A C,Hallsworth C R. 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology,124(1): 3-29. [42] Roser B P,Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1-2): 119-139. [43] Rudnick R,Gao S. 2014. Composition of the Continental Crust. Holland H, Turekina K K(eds). Treatise on Geochemistry. Amsterdam: Elsevier, 1-51. [44] Taylor S R,Mclennan S M. 1985. The continental crust: its composition and evolution. The Journal of Geology, 94(4): 57-72. [45] Wang J L,Wu C D,Li Z,Zhu W,Wang J. 2018. Whole-rock geochemistry and Zircon Hf Isotope of Late Carboniferous-Triassic Sediments in the Bogda Region,NW China: clues for provenance and tectonic setting. Geological Journal, 54(4): 1853-1877. [46] Wei Z,Li X,Sinclair H. 2020. The embryonic Himalayan Foreland Basin revealed in the eastern Yarlung Zangbo Suture Zone,southeastern Tibet. Sedimentary Geology, 407: 105743. [47] Williams M L,Jercinovic M J,Hetherington C J. 2007. Microprobe Monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth & Planetary Sciences, 35(1): 137-175.