Last glacial Heinrich Stadial 4 abrupt climatic events recorded by a stalagmite from Shuixi cave,Qianxi County,Guizhou Province
FENG Tanghui1, ZHANG Xin1,2, HE Yaoqi3, YANG Yunyue1, QIU Wanyin1, JIANG Xiuyang1,2
1 Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, School of Geography Science, Fujian Normal University,Fuzhou 350007,China; 2 Institute of Geography, Fujian Normal University,Fuzhou 350007,China; 3 College of Tourism and Aviation Service, Guizhou Minzu University,Guiyang 550025,China
Abstract The last glacial Heinrich Stadial 4 event(HS4 event),which occurred at about 40 ka B.P.(“B.P.”is short for “Before Present,“Present”refers to 1950 AD),is the most significant Heinrich event. The characterization of its transition characteristics and detailed structure is helpful to further understand the mechanism of millennial-scale abrupt climate events in the last glacial period. We reconstructed the intensity evolution of Asian summer monsoon with average resolution of 13 a from 40.77 ka B.P. to 37.17 ka B.P. based on 11 230Th ages and 277 δ18O data derived from a stalagmite(SXG-3)at Shuixi Cave,Qianxi County,Guizhou Province. Our record captured the detailed structure of the HS4 event,showing three phages of change: In the first phase(from 39.97 to 39.13 ka B.P.),the stalagmite δ18O showed a positive excursion by 1.32‰ within 840±90 a,indicating that the summer monsoon weakened slowly,associated with the southward shift of the Intertropical Convergence Zone(ITCZ)and the rapid cooling in Greenland area;in the second phase(from 39.13 to 38.35 ka B.P.),the stalagmite δ18O was generally positive,with an average of -8.34‰. During this phase,the summer monsoon intensity reached the weakest point,while the South American monsoon reached the strongest point,corresponding to the ITCZ lingered at its southernmost position;in the third phase(from 38.35 to 37.59 ka B.P.),the stalagmite δ18O was gradually negative to -9.25‰ at 760±89 a,corresponding to the northward movement of the ITCZ and the rapid warming of Greenland area. The three-phase structure of the HS4 event recorded in Shuixi Cave is similar to that recorded in Xianyun Cave,Fujian Province,and corresponds to the changes in low-latitude hydrological cycle processes reflected by the NEEM(Northern Greenland Eemian Ice Drilling)Ice core 17O-excess. It also represents a “mirror image”of the stalagmite records of the Toca da Boa Vista(TBV)and Toca da Barrigude(TBR)caves in South America. The analysis results show that upon triggering the high latitude climate in the northern hemisphere,the north-south movement of the ITCZ caused by the continuous accumulation and subsequent release of heat in the tropical ocean and the southern hemisphere is the main cause of such three-stage change.
Fund:Financially supported by the National Natural Science Foundation of China(No.42071106)
Corresponding Authors:
JIANG Xiuyang,born in 1981,professor and doctoral supervisor in the School of Geography Science,Fujian Normal University,is mainly engaged in karst process and paleoclimate reconstruction. E-mail: xyjiang@fjnu.edu.cn.
About author: FENG Tanghui,born in 1997,master degree candidate of Fujian Normal University,is mainly engaged in stalagmite paleoclimatic research. E-mail: 1009553859@qq.com.
Cite this article:
FENG Tanghui,ZHANG Xin,HE Yaoqi et al. Last glacial Heinrich Stadial 4 abrupt climatic events recorded by a stalagmite from Shuixi cave,Qianxi County,Guizhou Province[J]. JOPC, 2023, 25(1): 245-254.
FENG Tanghui,ZHANG Xin,HE Yaoqi et al. Last glacial Heinrich Stadial 4 abrupt climatic events recorded by a stalagmite from Shuixi cave,Qianxi County,Guizhou Province[J]. JOPC, 2023, 25(1): 245-254.
[1] 姜修洋,何尧启,沈川洲,孔兴功,李志忠,张育维. 2012. 全新世黔北降水特征的石笋记录及适宜期结束时间在亚洲季风区的不等时性. 科学通报, 57(1): 73-79. [Jiang X Y,He Y Q,Shen C Z,Kong X G,Li Z Z,Zhang Y W. 2012. Stalagmite-inferred holocene precipitation in northern Guizhou Province,China,and asynchronous termination of the climatic optimum in the asian monsoon territory. Chinese Science Bulletin, 57(1): 73-79] [2] 谭明. 2009. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话. 第四纪研究, 29(5): 851-862. [Tan M. 2009. Circulation effect: climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China-dialogue between paleclimate records and modern climate research. Quaternary Sciences, 29(5): 851-862] [3] 谭明,南素兰,段武辉. 2016. 中国季风区大气降水同位素的季节尺度环流效应. 第四纪研究, 36(3): 575-580. [Tan M,Nan S L,Duan W H. 2016. Seasonal scale circulation effect of stable isotope in atmospheric precipitation in the monsoon regions of China. Quaternary Sciences, 36(3): 575-580] [4] 汪永进,刘殿兵. 2016. 亚洲古季风变率和机制的洞穴石笋档案. 科学通报, 61(9): 938-951. [Wang Y J,Liu D B. 2016. Speleothem records of asian paleomonsoon variability and mechanisms. Chinese Science Bulletin, 61(9): 938-951] [5] 王德远,黎有为,高占冬,贾敏,吴克华,张慧江,钱治,张洪亮. 2019. 贵州黔西县水西洞洞穴成因及价值研究. 贵州科学, 37(4): 48-54. [Wang D Y,Li Y W,Gao Z D,Jia M,Wu K H,Zhang H J,Qian Z,Zhang H L. 2019. Speleogenesis and value of Shuixi cave in Qianxi,Guizhou. Guizhou Science, 37(4): 48-54] [6] 王健,程海,赵景耀,李瀚瑛,宁有丰,张美良,朱晓燕. 2019. 小冰期多尺度气候波动: 贵州董哥洞高分辨率石笋记录. 第四纪研究, 39(3): 775-785. [Wang J,Cheng H,Zhao J Y,Li H Y,Ning Y F,Zhang M L,Zhu X Y. 2019. Climate variability during the little ice age characterized by a high resolution stalagmite record from Dongge cave,Guizhou. Quaternary Sciences, 39(3): 775-785] [7] 赵侃. 2011. 贵州董哥洞近1000年石笋纹层年代学与同位素气候重建. 南京师范大学博士学位论文:38-40. [Zhao K. 2011. Annually-counting chronology and the isotopic cfimate reconstruction over the past millennia from stalagmites in Dongge cave. Doctoral dissertation of Nanjing Normal University: 38-40] [8] Böhm E,Lippold J,Gutjahr M,Frank M,Blaser P,Antz B,Fohlmeister J,Frank N,Andersen M B,Deininger M. 2015. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517(7532): 73-76. [9] Bond G C,Lotti R. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 267(5200): 1005-1010. [10] Buizert C,Cuffey K M,Severinghaus J P,Baggenstos D,Fudge T J,Steig E J,Markle B R,Winstrup M,Rhodes R H,Brook E J. 2015. The WAIS Divide deep ice core WD2014 chronology-Part 1: methane synchronization(68-31 ka BP) and the gas age-ice age difference. Climate of the Past, 11(2): 153-173. [11] Cai Y,An Z,Cheng H,Edwards R L,Kelly M J,Liu W,Wang X,Shen C-C. 2006. High-resolution absolute-dated Indian monsoon record between 53 and 36 ka from Xiaobailong cave,southwestern China. Geology, 34(8): 621-624. [12] Carolin S A,Cobb K M,Adkins J F,Clark B,Conroy J L,Lejau S,Malang J,Tuen A A. 2013. Varied response of western pacific hydrology to climate forcings over the last glacial period. Science, 340(6140): 1564-1566. [13] Cheng H,Edwards R L,Broecker W S,Denton G H,Kong X,Wang Y,Zhang R,Wang X. 2009. Ice age terminations. Science, 326(5950): 248-252. [14] Cheng H,Lawrence Edwards R,Shen C-C,Polyak V J,Asmerom Y,Woodhead J,Hellstrom J,Wang Y,Kong X,Spötl C,Wang X,Calvin Alexander E. 2013. Improvements in 230Th dating,230Th and 234U half-life values,and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372: 82-91. [15] Cheng H,Edwards R L,Sinha A,Spötl C,Yi L,Chen S,Kelly M,Kathayat G,Wang X,Li X,Kong X,Wang Y,Ning Y,Zhang H. 2016. The asian monsoon over the past 640000 years and ice age terminations. Nature, 534(7609): 640-646. [16] Cheng H,Zhang H,Spötl C,Baker J,Sinha A,Li H,Bartolomé M,Moreno A,Kathayat G,Zhao J,Dong X,Li Y,Ning Y,Jia X,Zong B,Brahim Y A,Pérez-Mejías C,Cai Y,Novello V F,Cruz F W,Severinghaus J P,An Z,Edwards R L. 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proceedings of the National Academy of Sciences, 117(38): 23408-23417. [17] Cheng H,Xu Y,Dong X,Zhao J,Li H,Baker J,Sinha A,Spötl C,Zhang H,Du W,Zong B,Jia X,Kathayat G,Liu D,Cai Y,Wang X,Strikis N M,Cruz F W,Auler A S,Gupta A K,Singh R K,Jaglan S,Dutt S,Liu Z,Edwards R L. 2021. Onset and termination of Heinrich Stadial 4 and the underlying climate dynamics. Communications Earth & Environment, 2(1): 230. [18] Chiang J C H,Friedman A R. 2012. Extratropical cooling,interhemispheric thermal gradients,and tropical climate change. Annual Review of Earth and Planetary Sciences, 40(1): 383-412. [19] Chiang J C H,Lee S-Y,Putnam A E,Wang X. 2014. South Pacific Split Jet,ITCZ shifts,and atmospheric North-South linkages during abrupt climate changes of the last glacial period. Earth and Planetary Science Letters, 406: 233-246. [20] Deplazes G,Lückge A,Peterson L C,Timmermann A,Hamann Y,Hughen K A,Röhl U,Laj C,Cane M A,Sigman D M,Haug G H. 2013. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience, 6(3): 213-217. [21] Dong J,Shen C C,Kong X,Wang Y,Duan F. 2018. Asian monsoon dynamics at Dansgaard/Oeschger events 14-8 and Heinrich events 5-4 in northern China. Quaternary Geochronology, 47: 72-80. [22] Grootes P M,Stuiver M,White J W C,Johnsen S,Jouzel J. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455): 552-554. [23] Guillevic M,Bazin L,Landais A,Stowasser C,Masson-Delmotte V,Blunier T,Eynaud F,Falourd S,Michel E,Minster B,Popp T,Prié F,Vinther B M. 2014. Evidence for a three-phase sequence during Heinrich stadial 4 using a multiproxy approach based on greenland ice core records. Climate of the Past, 10(6): 2115-2133. [24] Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years. Quaternary Research, 29(2): 142-152. [25] Hemming S R. 2004. Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42(1): RG1005. [26] Hendy C H. 1971. The isotopic geochemistry of speleothems—i. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35(8): 801-824. [27] Henry L G,McManus J F,Curry W B,Roberts N L,Piotrowski A M,Keigwin L D. 2016. North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353(6298): 470-474. [28] Hiess J,Condon D J,McLean N,Noble S R. 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076): 1610-1614. [29] Jaffey A H,Flynn K F,Glendenin L E,Bentley W C,Essling A M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5): 1889-1906. [30] Jiang X,Wang X,He Y,Hu H M,Li Z,Spötl C,Shen C. 2016. Precisely dated multidecadally resolved asian summer monsoon dynamics 113.5-86.6 thousand years ago. Quaternary Science Reviews, 143: 1-12. [31] Johnsen S J,Dahl-Jensen D,Gundestrup N,Steffensen J P,Clausen H B,Miller H,Masson-Delmotte V,Sveinbjörnsdottir A E,White J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century,Dye-3,GRIP,GISP2,Renland and NorthGRIP. Journal of Quaternary Science, 16(4): 299-307. [32] Jonkers L,Moros M,Prins M A,Dokken T,Dahl C A,Dijkstra N,Perner K,Brummer G-J A. 2010. A reconstruction of sea surface warming in the northern North Atlantic during MIS3 ice-rafting events. Quaternary Science Reviews, 29(15): 1791-1800. [33] MacAyeal D R. 1993. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8(6): 775-784. [34] Marcott S A,Clark P U,Padman L,Klinkhammer G P,Springer S R,Liu Z,Otto-Bliesner B L,Carlson A E,Ungerer A,Padman J,He F,Cheng J,Schmittner A. 2011. Ice-shelf collapse from subsurface warming as a trigger for heinrich events. Proceedings of the National Academy of Sciences, 108(33): 13415-13419. [35] McManus J F,Francois R,Gherardi J M,Keigwin L D,Brown-Leger S. 2004. Collapse and rapid resumption of atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985): 834-837. [36] Mudelsee M. 2009. Break function regression. The European Physical Journal Special Topics, 174(1): 49-63. [37] Nagashima K,Tada R,Tani A,Sun Y,Isozaki Y,Toyoda S,Hasegawa H. 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences, 40(6): 1214-1220. [38] Partin J W,Quinn T M,Shen C C,Okumura Y,Cardenas M B,Siringan F P,Banner J L,Lin K,Hu H M,Taylor F W. 2015. Gradual onset and recovery of the younger dryas abrupt climate event in the tropics. Nature Communications, 6(1): 8061. [39] Rasmussen T L,Thomsen E. 2004. The role of the north atlantic drift in the millennial timescale glacial climate fluctuations. Palaeogeography,Palaeoclimatology,Palaeoecology, 210(1): 101-116. [40] Schneider T,Bischoff T,Haug G H. 2014. Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516): 45-53. [41] Shen C C,Wu C C,Cheng H,Lawrence Edwards R,Hsieh Y T,Gallet S,Chang C C,Li T Y,Lam D D,Kano A,Hori M,Spötl C. 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with sem protocols. Geochimica et Cosmochimica Acta, 99: 71-86. [42] Steffensen J P,Andersen K K,Bigler M,Clausen H B,Dahl-Jensen D,Fischer H, Goto-Azuma K, Hansson M, Johnsen S J, Jouzel J. 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321(5889): 680-684. [43] Stocker T F,Johnsen S J. 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18(4): 1087. [44] Stott L,Poulsen C,Lund S,Thunell R. 2002. Super ENSO and global climate oscillations at millennial time scales. Science, 297(5579): 222-226. [45] Svensson A,Andersen K K,Bigler M,Clausen H B,Dahl-Jensen D,Davies S M,Johnsen S J,Muscheler R,Parrenin F,Rasmussen S O,Röthlisberger R,Seierstad I,Steffensen J P,Vinther B M. 2008. A 60 000 year greenland stratigraphic ice core chronology. Climate of the Past, 4(1): 47-57. [46] Wang P X,Wang B,Cheng H,Fasullo J,Guo Z,Kiefer T,Liu Z. 2017. The global monsoon across time scales: mechanisms and outstanding issues. Earth-Science Reviews, 174: 84-121. [47] Wang Y,Cheng H,Edwards R L,He Y,Kong X,An Z,Wu J,Kelly M J,Dykoski C A,Li X. 2005. The Holocene Asian monsoon: links to solar changes and north atlantic climate. Science, 308(5723): 854-857. [48] Wang Y J,Cheng H,Edwards R L,An Z S,Wu J Y,Shen C C,Dorale J A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave,China. Science, 294(5550): 2345-2348. [49] Wary M,Eynaud F,Rossignol L,Lapuyade J,Gasparotto M C,Londeix L,Malaizé B,Castéra M H,Charlier K. 2016. Norwegian sea warm pulses during Dansgaard-Oeschger stadials: zooming in on these anomalies over the 35-41 ka cal BP interval and their impacts on proximal european ice-sheet dynamics. Quaternary Science Reviews, 151: 255-272. [50] Wendt K A,Häuselmann A D,Fleitmann D,Berry A E,Wang X,Auler A S,Cheng H,Edwards R L. 2019. Three-phased Heinrich stadial 4 recorded in NE brazil stalagmites. Earth and Planetary Science Letters, 510: 94-102. [51] Yuan D,Cheng H,Edwards R L,Dykoski C A,Kelly M J,Zhang M,Qing J,Lin Y,Wang Y,Wu J,Dorale J A,An Z,Cai Y. 2004. Timing,duration,and transitions of the last interglacial asian monsoon. Science, 304(5670): 575-578. [52] Zhang X,Qiu W,Jiang X,Hu H M,Xiao H,Cai B,Shen C C. 2021. Three-phase structure of the east asia summer monsoon during Heinrich stadial 4 recorded in xianyun cave,southeastern China. Quaternary Science Reviews, 274: 107267.