1 Wuxi Institute,Exploration & Production Research Institute,SINOPEC,Jiangsu Wuxi 214151,China; 2 Department of Science and Technology, China Petroleum & Chemical Corportion,Beijing 100728,China; 3 Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 4 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
Abstract Ooids in carbonate rocks are significant for the reconstruction of sedimentary environment. The co-occurrence of various ooids is found in the lagoon and shoal of the Ediacaran Qigebulake Formation in the Well Xinghuo 1 region located in the northern Tarim Basin. The characteristics and distribution of different types of oolites are studied based on the systematic methods including the description of field profile,observation of cores,thin sections,casting film,cathodoluminescence,environmental scanning electron microscope(SEM)etc. The specific sedimentary environments of the nucleation and growth of oolites,diagenetic transformation and other processes are discussed in detail. Twelve types of oolites in Qigebulake Formation of the study region are classified based on the microstructure,morphology,assemblage(single or polyphase)and diagenetic alteration. The fresh water metasomatism,rapid pseudo-dolomitization,recrystallization occur in the concentric ooids,radial ooids,etc. The tearing,wear and transport of the bottom currents and eddy currents caused by near-source storms provide the basic conditions for the nucleation of mud crystal ooids,thin-skin ooids,radial mud crystal ooids,brain-shaped ooids,and some spherical ooids,and compound ooids,and the microbial activities. The extensive development of aragonite-high magnesium calcite cementation in the soft substrate of the low-energy environment in the aragonite-dolomite sea promotes the formation of ooids. The former develops in tidal or shoal environments,while the latter develops in tidal-lagoon environments,and the storm surges or undercurrents caused the symbiotic combination of different types of ooids. Therefore,the micrite nucleation with the microbial participation,terrace-form crystal growth in the suspension and accretion process under a certain hydrodynamic condition,differential diagenetic alteration are the dominant factors for the development and occurrence of various types of ooids in the Ediacaran carbonate rocks. The oolitic mold pores,intergranular dissolved pores,intergranular pores,and micropores in the organic matters play the certain role of oil-gas reservoir. The study of the ooids in the Qigebulake Formation is helpful for the reconstruction of Precambrian palaeomarine and atmospheric components,hydrodynamic and microbial effects in nucleation and growth of oolites in soft substrates,early diagenetic transformation,and the formation and preservation mechanisms of pores.
Fund:Co-funded by the National Key Basic Research Project of China(No.2017YFC0603103)and a Strategic Leading Science and Technology Project,the Chinese Academy of Sciences(No. XDAXX010201-3)
About author: QIAN Yixiong,born in 1962,Ph.D,is a senior engineer. His research interests focus on carbonate rock sedimentology and reservoir. E-mail: qyx9167@vip.sina.com.
Cite this article:
QIAN Yixiong,HE Zhiliang,CHEN Daizhao et al. Characteristics and genesis of various oolites in the Ediacaran Qigebulake Formation in northern Tarim Basin[J]. JOPC, 2023, 25(1): 56-74.
QIAN Yixiong,HE Zhiliang,CHEN Daizhao et al. Characteristics and genesis of various oolites in the Ediacaran Qigebulake Formation in northern Tarim Basin[J]. JOPC, 2023, 25(1): 56-74.
[1] 韩强,杨子川,李宗杰,朱允辉,韩勇,曹远志,陈绪云. 2017. 塔里木盆地沙雅隆起北部震旦纪地层特征与锆石U-Pb年龄约束. 地层学杂志, 41(4): 428-436. [Han Q,Yang Z C,Li Z J,Zhu Y H,Han Y,Cao Y Z,Chen X Y. 2017. Sinian stratigraphy and zircon U-Pb ages from the Shaya uplift of Tarim Basin,NW China. Journal of Stratigraphy, 41(4): 428-436] [2] 李飞,武思琴,刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指导意义. 沉积学报, 33(3): 500-511. [Li F,Wu S Q,Liu K. 2015. Identification of ooid primary mineralogy: a clue for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [3] 钱一雄,何治亮,李慧莉,陈跃,金婷,沙旭光,李洪全. 2017. 塔里木盆地北部埃迪卡拉系葡萄状白云岩的发现及成因探讨. 古地理学报, 19(2): 197-210. [Qian Y X,He Z L,Li H L,Chen Y,Jin T,Sha X G,Li H Q. 2017. The discovery and interpretation for origin of grape-like dolostone in the Upper Sinian in North Tarim. Journal of Palaeogeography(Chinese Edition), 19(2): 197-210] [4] 王瀚,李智武,刘树根,宋金民,冉波,赖冬,韩雨樾. 2019. 扬子地台北缘城口地区上寒武统洗象池组风暴沉积特征及其地质意义. 石油实验地质, 41(2): 176-184. [Wang H,Li Z W,Liu S G,Song J M,Ran B,Lai D,Han Y Y. 2019. Sedimentary characteristic and geological significance of tempestites in the Upper Cambrian Xixiangchi Formation,Chengkou area,norther margin of the Yangtze Platform. Petroleum Geology & Experiment, 41(2): 176-184] [5] Antoshkina A I,Zhegallo E A,Isaenko S I. 2020. Microbially mediated organomineralization in Paleozoic carbonate ooids. Paleontological Journal, 54(8): 825-834. [6] Batchelor M T,Burne R V,Henry B I,Li F,Paul J. 2018. A biofilm and organo mineralization model for the growth and limiting size of ooids. Scientific Reports, 8: 559. [7] Binda P L,Koopman H T,Schwann P L. 1985. Sulphide ooids from the Proterozoic Siyeh Formation of Alberta,Canada. Mineralium Deposita, 20(1): 43-49. [8] Brehm U,Krumbein W E,Palinska K A. 2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545-550. [9] Chatalov A G. 2005. Aragonitic-calcitic ooids from Lower to Middle Triassic peritidal sediments in the western Balkanides,Bulgaria. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 237: 87-110. [10] Christopher C C. 1990. Late Mississippan Girvanella-Bryozoan mud mounds in southern West Virginia. Alaios, 5(5): 460-471. [11] Collin P Y,Loreau J P,Courville P. 2005. Depositional environments and iron ooid formation in condensed sections(Callovian-Oxfordian,south-eastern Paris basin,France). Sedimentology, 52(5): 969-985. [12] Défarge C,Trichet J. 1995. From biominerals to‘organominerals’: the example of the modern lacustrine calcareous stromatolites from Polynesian atolls. In: Allemand D,Cuif J P(eds). Proceedings 7th International Symposium on Biomineralization. Bulletin de l'Institut Océanographique de Monaco, 14(2): 265-271. [13] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A,Altabet M A. 2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62(7): 2090-2112. [14] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K. 2017. Microbially mediated organo-mineralization in the formation of ooids. Geology, 45: 771-774. [15] Diaz M R,Eberli G P. 2019. Decoding the mechanism of formation in marine ooids: a review. Earth-Science Reviews, 190: 536-556. [16] Dupraz C,Visscher P T. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbial, 13: 429-438. [17] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-152. [18] Fabricius F H,Berdau D,Münnich K O. 1970. Early Holocene ooids in modern littoral sands reworked from a coastal terrace,southern Tunisia. Science, 169(3947): 757-760. [19] Flannery D T,Allwood A C,Hodyss R,Summons R E,Tuite M,Walter M R,Williford K H. 2019. Microbially influenced formation of Neoarchean ooids. Geobiology, 17(2): 151-160. [20] Flügel E. 2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin: Springer-Verlag,369-396. [21] Folk R L,Lynch F L. 2001. Organic matter,putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology, 48: 215-229. [22] Gernot A,Andeas R,Joachim R. 1999. Calcification in cyanobacterial biofilms of alkaline salt lakes. European Journal of Phycology, 34: 393-403. [23] Griffith E M,Paytan A. 2012. Barite in the ocean-occurrence,geochemistry,and palaeoceanographic applications. Sedimentology, 59(6): 1817-1835. [24] Harris P,Diaz M R,Eberli G P. 2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 491-516. [25] Hofmann H J,Grey K,Hickman A H,Thorpe R I. 1999. Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group,Western Australia. GSA Bulletin, 111: 1256-1262. [26] Hood A S,Wallace M W,Drysdale R N. 2011. Neoproterozoic aragonite-dolomite seas?widespread marine dolomite precipitation in Cryogenian reef complexes. Geology, 39(9): 871-874. [27] Hood A V S,Wallace M W. 2018. Neoproterozoic marine carbonates and their paleoceanographic significance. Global and Planetary Change, 160: 28-45. [28] Li F,Yan J X,Algeo T,Wu X. 2013. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids(Moyang,South China). Global and Planetary Change, 105: 102-120. [29] Milroy P G,Wright V P. 2002. Fabrics,facies control and diagenesis of lacustrine ooids and associated grains from the Upper Triassic,southwest England. Geological Journal, 37(1): 35-53. [30] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O. 2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [31] Plee K,Ariztegui D,Martini R,Davaud E. 2008. Unravelling the microbial role in ooid formation: results of an in situ experiment in modem fresh water Lake Geneva in Switzerland. Geobiology, 6: 341-350. [32] Purkis S J,Harris P,Cavalcante G. 2019. Controls of depositional facies patterns on a modern carbonate platform: insight from hydrodynamic modeling. The Depositional Record, 5(3): 421-437. [33] Qian T,Ze J S,Ya M T,Yong W,Chang C W. 2018. Origin of ooids in ooidal-muddy laminites: a case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin,South China. Geological Journal, 53(5): 1716-1727. [34] Reilly S S O',Mariotti G,Winter A R,Newman S A,Matys E D,McDermott F,Pruss S B,Bosak T,Summons R E,Ceraj V K. 2017. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay. The Bahamas Geobiology, 53(5): 1716-1727. [35] Riding R. 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(Supp 11): 179-214. [36] Schiavon N. 1988. Goethite ooids: growth mechanism and sandwave transport in the Lower Greensand(early Cretaceous,southern England). Geological Magazine, 125(1): 57-62. [37] Schlager W. 2003. Benthic carbonate factories of the Phanerozoic. International Journal Earth Sciences(Geologische Rundschau), 92: 445-464 [38] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A. 2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [39] Siesser W G. 1973. Diagenetically formed ooids and intraclasts in South African calcretes. Sedimentology, 20(4): 539-551. [40] Sumner D Y,Grotzinger J P. 1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Petrology, 63(5): 974-982. [41] Tang D J,Shi X Y,Shi Q,Wu J J,Song G Y,Jiang G Q. 2015. Organo-mineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Science, 107: 195-211. [42] Trower E J. 2020. The enigma of Neoproterozoic giant ooids: fingerprints of extreme climate? Geophysical Research Letters, 47(4): e2019GL086146. [43] Trower E J,Bridgers S L,Lamb M P,Fischer W W. 2020. Ooid cortical stratigraphy reveals common histories of individual co-occurring sedimentary grains. Journal of Geophysical Research: Earth Surface, 125: e2019JF005452. [44] Wilkinson B H,Given R K. 1986. Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. The Journal of Geology, 94(3): 321-333.