Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology
Franz T. Fürsicha, Alfred Uchmanb, Matthias Albertic, Dhirendra K. Pandeyd
a GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany; b Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland; c Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; d Earth and Planetary Sciences Group/Palaeontology, Manipal Center for Natural Sciences, Manipal University, Manipal - 576 104, Karnataka, India
Abstract The uppermost part of the Upper Bathonian Sponge Limestone member, Patcham Formation, of the Jhura Dome of Kachchh Mainland is a thickening- and shallowing-upward succession topped by medium- to thick-bedded hummocky cross-stratified grainstones deposited by storm waves. Occasionally, thin, commonly lenticular, intraclastic-bioclastic silty marl intercalations between the grainstones are highly bioturbated, in contrast to the grainstones, in which, for the most part, trace fossils occur scattered. Large exposures of bedding planes of the grainstones allow the detailed investigation of ichnological features, whereas the high density of traces in the soft marls precludes the identification of any ichnotaxa. Eighteen ichnotaxa have been recorded including Ophiomorpha, Thalassinoides, Taenidium, Gyrophyllites, Chondrites, Dactyloidites, Teichichnus, Bolonia, and Ancorichnus. Except for Ophiomorpha nodosa and Thalassinoides, which generally indicate moderate to high energy conditions and are the dwelling burrows of suspension-feeding to omnivorous crustaceans, the ichnotaxa represent a deposit-feeding behaviour of their producers and thus are characteristic of low-energy environments. The trace fossils form three ichnoassemblages characterized by (1) Ophiomorpha nodosa and Thalassinoides suevicus, (2) ?Thalassinoides isp. A, Taenidium, and Bolonia lata, and (3) Ancorichnus. The dominance of traces of deposit-feeders in rocks indicative of high-energy events is counterintuitive and points to their non-contemporaneity. The sediments were deposited during brief high-energy events, whereas the trace fossils were produced when, after waning of storms low-energy conditions prevailed. This time-averaging is particularly pronounced in trace fossils that extend vertically downwards and may reach strata deposited under distinctly different conditions. Thus, environmental interpretations based on trace fossils should refer to colonisation surfaces rather than to the sediment surrounding the trace fossils. In the latter case, interpretations may be erroneous, especially when erosion subsequently destroyed sedimentary evidence of their original environment.
. Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology[J]. , 2018, 7(1): 14-31.
. Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology[J]. Journal of Palaeogeography, 2018, 7(1): 14-31.
Alpert, S.P., 1973. Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. Journal of Paleontology , 47(5), 919-924.
[2]
Belaústegui, Z., Domènech, R., Martinell, J., 2015. Trace fossils of the Middle Miocene of the El Campo de Tarragona Basin (NE Spain). In: McIlroy, D. (Ed.), Ichnology. Papers from Ichnia III . Geological Association of Canada, Miscellaneous Publication , 9, pp. 15-30.
[3]
Biswas, S.K., 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics , 135(4), 307-327.
[4]
Biswas, S.K., 2016. Mesozoic and Tertiary stratigraphy of Kutch (Kachchh) — A review. In: Thakkar, M.G. (Ed.), Recent Studies on the Geology of Kachchh . Geological Society of India, Special Publication , 6, pp. 1-24.
[5]
Bromley, R.G., 1996. Trace Fossils: Biology, Taphonomy and Applications , 2 nd edition. Chapman and Hall, London, 361 pp.
[6]
Bromley, R.G., Pedersen, G.K., 2008. Ophiomorpha irregulaire , Mesozoic trace fossil that is either well understood but rare in outcrop or poorly understood but common in core. Palaeogeography, Palaeoclimatology, Palaeoecology , 270(3-4), 295-298.
[7]
Chen, Z.Q., Tong, J.N., Fraiser, M.L., 2011. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology , 299(3-4), 449-474.
[8]
Chen, Z.Q., Yang, H., Luo, M., Benton, M.J., Kaiho, K., Zhao, L.S., Huang, Y.G., Zhang, K.X., Fang, Y.H., Jiang, H.S., Qiu, H., Li, Y., Tu, C.Y., Shi, L., Zhang, L., Feng, X.Q., Chen, L., 2015. Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. Earth-Science Reviews , 149(Supplement C), 67-107.
[9]
D'Alessandro, A., Bromley, R.G., 1987. Meniscate trace fossils and the Muensteria - Taenidium problem. Palaeontology , 30(4), 743-763.
[10]
Ekdale, A.A., Bromley, R.G., 1991. Analysis of composite ichnofabrics: An example in uppermost Cretaceous chalk of Denmark. Palaios , 6(3), 232-249.
Frey, R.W., Curran, H.A., Pemberton, S.G., 1984. Tracemaking activities of crabs and their environmental significance: The ichnogenus Psilonichnus . Journal of Paleontology , 58(2), 333-350.
[13]
Fu, S., 1991. Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschungsinstitut Senckenberg , 135, 1-79 (in German).
[14]
Fürsich, F.T., 1974. Corallian (Upper Jurassic) trace fossils from England und Normandy. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 13, 1-52.
[15]
Fürsich, F.T., 1978. The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia , 11(3), 243-250.
[16]
Fürsich, F.T., 1981. Upper Jurassic trace fossils from Portugal. Comunicações dos Serviços Geológicos de Portugal , 67, 153-168.
[17]
Fürsich, F.T., 1998. Environmental distribution of trace fossils in the Jurassic of Kachchh (western India). Facies , 39(1), 243-272.
[18]
Fürsich, F.T., Bromley, R.G., 1985. Behavioural interpretation of a rosetted spreite trace fossil: Dactyloidites ottoi (Geinitz). Lethaia , 18(3), 199-207.
Fürsich, F.T., Alberti, M., Pandey, D.K., 2013. Stratigraphy and palaeoenvironments of the Jurassic rocks of Kachchh — Field Guide. The 9 th International Congress on the Jurassic System, Jaipur . Beringeria Special Issue , 7, 3-174.
[21]
Fürsich, F.T., Singh, I.B., Joachimski, M., Krumm, S., Schlirf, M., Schlirf, S., 2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): An integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data. Palaeogeography, Palaeoclimatology, Palaeoecology , 217(3-4), 289-309.
[22]
Fürsich, F.T., Pandey, D.K., Alberti, M., 2017. Behavioural variants of the trace fossil Gyrochorte . Zitteliana , 89, 13-21.
[23]
Giannetti, A., Monaco, P., Caracuel, J.E., Soria, J.M., Yébenes, A., 2007. Functional morphology and ethology of decapod crustaceans gathered by Thalassinoides branched burrows in Mesozoic shallow water environments. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano , 35(II), 48-52.
[24]
Häntzschel, W., 1970. Star-like trace fossils. In: Crimes, T.P., Harper, J.C. (Eds.), Trace Fossils. Geological Journal, Special Issue , vol. 3, pp. 201-214.
[25]
Häntzschel, W., 1975. Trace Fossils and Problematica . The Geological Society of America, Boulder, and the University of Kansas Press, Lawrence, pp. W1-W269.
[26]
Heinberg, C., Birkelund, T., 1984. Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central East Greenland). Journal of Paleontology , 58(2), 362-397.
[27]
Keighley, D.G., Pickerill, R.K., 1994. The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium . Palaeontology , 37(2), 305-337.
[28]
Keighley, D.G., Pickerill, R.K., 1995. The ichnotaxa Palaeophycus and Planolites : Historical perspectives and recommendations. Ichnos , 3(4), 301-309.
[29]
Kennedy, W.J., Sellwood, B.W., 1970. Ophiomorpha nodosa Lundgren, a marine indicator from the Sparnacian of South-East England. Proceedings of the Geologists’ Association , 81(1), 99-110 and IN12-IN13.
[30]
Knaust, D., Bromley, R.G. (Eds.), 2012. Trace Fossils as Indicators of Sedimentary Environments . Developments in Sedimentology , 64, 960 pp.
[31]
Knaust, D., Uchman, A., Hagdorn, H., 2016. The probable isopod burrow Sinusichnus seilacheri isp. n. from the Middle Triassic of Germany: An example of behavioral convergence. Ichnos , 23(1-2), 138-146.
[32]
Leaman, M., McIlroy, D., Herringshaw, L.G., Boyd, C., Callow, R.H.T., 2015. What does Ophiomorpha irregulaire really look like? Palaeogeography, Palaeoclimatology, Palaeoecology , 439(Supplement C), 38-49.
[33]
Mehl, D., Fürsich, F.T., 1997. Middle Jurassic Porifera from Kachchh, western India. Paläontologische Zeitschrift , 71(1-2), 19-33.
[34]
Osgood, R.G., 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana , 6, 293-235.
[35]
Pemberton, S.G., Frey, R.W., 1982. Trace fossil nomenclature and the Planolites ? Palaeophycus dilemma. Journal of Paleontology , 56(4), 843-881.
[36]
Pemberton, S.G., Frey, R.W., Bromley, R.G., 1988. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences , 25(6), 866-892.
[37]
Pemberton, S.G., MacEachern, J.A., Ranger, M.J., 1992. Ichnology and event stratigraphy: The use of trace fossils in recognizing tempestites. In: Pemberton, S.G. (Ed.), Applications of Ichnology to Petroleum Exploration: A Core Workshop . Society for Sedimentology (SEPM), Core Workshop, 17, pp. 85-117.
[38]
Radwański, A., Roniewicz, P., 1970. General remarks on the ichnocoenose concept . Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Géologiques et Géographiques , 18, 51-56 (in French).
[39]
Rai, J., Jain, S., 2013. Pliensbachian nannofossils from Kachchh: Implications on the earliest Jurassic transgressive event on the western Indian margin. Zitteliana , A53, 105-120.
[40]
Savrda, C.E., 2016. Composite ichnofabrics: Categorization based on number of ichnocoenoses and their temporal incongruence. Palaios, 31(3), 92?96.
[41]
Schlirf, M., 2000. Upper Jurassic trace fossils from the Boulonnais (northern France). Geologica et Palaeontologica , 34, 145-213.
[42]
Schweigert, G., 1998. Die Spurenfauna des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 262, 1-47.
[43]
Strzeboński, P., Uchman, A., 2015. The trace fossil Gyrophyllites in deep-sea siliciclastic deposits of the Istebna Formation (Upper Cretaceous-Palaeocene) of the Carpathians: An example of biologically controlled distribution. Palaeogeography, Palaeoclimatology, Palaeoecology , 426, 260-274.
[44]
Taylor, A.M., Gawthorpe, R.L., 1993. Application of sequence stratigraphy and trace fossil analysis to reservoir description: Examples from the Jurassic of the North Sea. In: Parker, J.R. (Ed.), Petroleum Geology of Northwest Europe: Proceeding of the 4 th Conference . Geological Society, London, pp. 317-335.
[45]
Uchman, A., 1995. Tiering patterns of trace fossils in the Paleogene flysch deposits of the Carpathians, Poland. Geobios , 28(Supplement 1), 389-394.
[46]
Uchman, A., 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous?Eocene) in Austria and Germany. Beringeria , 25, 65-171.
[47]
Uchman, A., Caruso, C., Sonnino, M., 2012. Taxonomic review of Chondrites affinis (Sternberg, 1833) from Cretaceous-Neogene offshore-deep-sea Tethyan sediments and recommendation for its further use. Rivista Italiana di Paleontologia e Stratigrafia , 118(2), 313-324.
[48]
Vyalov, O.S., 1989. Paleoichnological studies . Paleontologičeskij Sbornik , 26, 72-78 (in Russian with English summary).
[49]
Weimer, R.J., Hoyt, J.H., 1964. Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments. Journal of Paleontology , 38(4), 761-767.
[50]
Wetzel, A., Aigner, T., 1986. Stratigraphic completeness: Tiered trace fossils provide a measuring stick. Geology , 14(3), 234-237.
[51]
Wilmsen, M., Niebuhr, B., 2014. The rosetted trace fossil Dactyloidites ottoi (Geinitz, 1849) from the Cenomanian (Upper Cretaceous) of Saxony and Bavaria (Germany): Ichnotaxonomic remarks and palaeoenvironmental implications. Paläontologische Zeitschrift , 88(2), 123-138.