This study presents geochemical characteristics of glauconites in estuarine deposits within the Maastrichtian Lameta Formation in central India. Resting conformably over the Bagh Group, the Lameta Formation consists of ~4-5 m thick arenaceous, argillaceous and calcareous green sandstones underlying the Deccan Traps. The sandstone is friable, medium- to coarse-grained, well-sorted and thoroughly cross-stratified, and contains marine fossils. Detailed petrography, spectroscopy and mineral chemistry indicates unique chemical composition of glauconite with high K2O, MgO, Al2O3 and moderate TFe2O3. Glauconite is formed by the replacement of K-feldspars, initially as stringers in the cleavages and fractures of feldspars. Incipient glauconite subsequently evolves fully, appearing as pellets. Fully-evolved glauconite pellets often leave tiny relics of K-feldspar. XRD exhibits characteristic peak of 10 Å from basal (001) reflection of glauconite, indicating the “evolved” character. The K2O content of glauconites in the Lameta Formation varies from 5.51% to 8.29%, corroborating the “evolved” to “highly-evolved” maturation stage. The TFe2O3 content of glauconite varies from 12.56% to 18.90%. The PASS-normalized-REE patterns of glauconite exhibit a “hat-shape” confirming the authigenic origin of glauconites. The slightly-negative to slightly-positive Ce anomaly value and the moderate TFe2O3 content of glauconite agree well with a suboxic, estuarine condition. The replacement of K-feldspar by the glauconite contributes towards the high K2O content. Compositional evolution of glauconites in the Lameta Formation is similar to those observed in many Precambrian sedimentary sequences.
Corresponding Authors:*E-mail address: santanu@iitb.ac.in (S. Banerjee).
Cite this article:
. Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, Narmada Basin, central India[J]. Journal of Palaeogeography, 2018, 7(2): 99-116.
. Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, Narmada Basin, central India[J]. Journal of Palaeogeography, 2018, 7(2): 99-116.
Ahmad A.H.M., Akhtar K., 1990. Clastic environments and facies of the Lower Cretaceous Narmada Basin, India.Cretaceous Research, 11(2), 175-190.
[2]
Amorosi A.,1997. Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research.Sedimentary Geology, 109(1-2), 135-153.
[3]
Amorosi A.,2013. The occurrence of glaucony in the stratigraphic record: Distribution patterns and sequence-stratigraphic significance. In: Morad, S., Ketzer, J.M., De Ros, L.F. (Eds.), Linking Diagenesis to Sequence Stratigraphy. IAS Special Publications, 45, pp. 37-53.
[4]
Amorosi A., Sammartino I., Tateo F., 2007. Evolution patterns of glaucony maturity: A mineralogical and geochemical approach.Deep-Sea Research Part II: Topical Studies in Oceanography, 54(11), 1364-1374.
[5]
Bailey S.W.,1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals.American Mineralogist, 65(1-2), 1-7.
[6]
Baldermann A., Grathoff G.H., Nickel C., 2012. Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany). Clay Minerals, 47(4), 513-538.
[7]
Bandopadhyay P.C.,2007. Interpretation of authigenic vs. allogenic green peloids of ferric clay in the Proterozoic Penganga Group, southern India.Clay Minerals, 42(4), 471-485.
[8]
Banerjee S., Bansal U., Pande K., Meena S.S., 2016b. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation.Sedimentary Geology, 331, 12-29.
[9]
Banerjee S., Bansal U., Thorat A.V., 2016a. A review on palaeogeographic implications and temporal variation in glaucony composition.Journal of Palaeogeography, 5(1), 43-71.
[10]
Banerjee S., Chattoraj S.L., Saraswati P.K., Dasgupta S., Sarkar U., 2012a. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India.Marine and Petroleum Geology, 30(1), 144-160.
[11]
Banerjee S., Chattoraj S.L., Saraswati P.K., Dasgupta S., Sarkar U., Bumby A., 2012b. The origin and maturation of lagoonal glauconites: A case study from the Oligocene Maniyara Fort Formation, western Kutch, India.Geological Journal, 47(4), 357-371.
[12]
Banerjee S., Jeevankumar S., Eriksson P.G., 2008. Mg-rich ferric illite in marine transgressive and highstand systems tracts: Examples from the Paleoproterozoic Semri Group, central India.Precambrian Research, 162(1-2), 212-226.
[13]
Banerjee S., Mondal S., Chakraborty P.P., Meena S.S., 2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India.Precambrian Research, 271, 33-48.
[14]
Bansal U.,2017. Origin, Stratigraphic Significance and Geochemical Characteristics of Cretaceous Glauconites in Peninsular India [Unpublished Ph.D. Thesis]. Indian Institute of Technology Bombay, India.
[15]
Bansal U., Banerjee S., Pande K., Arora A., Meena S.S., 2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch basin, India) and its implications.Marine and Petroleum Geology, 82, 97-117.
[16]
Bau M., Dulski P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa.Precambrian Research, 79(1-2), 37-55.
[17]
Bellanca A., Claps M., Erba E., Masetti D., Neri R., Premoli Silva I., Venezia F., 1996. Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry.Palaeogeography, Palaeoclimatology, Palaeoecology, 126(3-4), 227-260.
[18]
Besse J., Buffetaut E., Cappetta H., Courtillot V., Jaeger J.J., Montigny R., Rana R.S., Sahni A., Vandamme D., Vianey-Liaud, M., 1986. The Deccan Trapps (India) and Cretaceous-Tertiary boundary events. In: Walliser, O.H. (Ed.), Global Bio-Events. Springer Berlin Heidelberg, pp. 363-370.
[19]
Bornhold B.D., Giresse P., 1985. Glauconitic sediments on the continental shelf off Vancouver Island, British Columbia, Canada. Journal of Sedimentary Petrology, 55(5), 653-664.
[20]
Buffetaut E.,1987. On the age of the dinosaur fauna from the Lameta Formation (Upper Cretaceous of Central India).Newsletters on Stratigraphy, 18(1), 1-6.
[21]
Burst J.F.,1958a. “Glauconite” pellets: Their mineral nature and applications to stratigraphic interpretations.AAPG Bulletin, 42(2), 310-327.
[22]
Burst J.F.,1958b. Mineral heterogeneity in “glauconite” pellets.American Mineralogist, 43(5), 481-497.
[23]
Chafetz H.S., Reid A., 2000. Syndepositional shallow-water precipitation of glauconitic minerals.Sedimentary Geology, 136(1-2), 29-42.
[24]
Chang S.S., Shau Y.H., Wang M.K., Ku C.T., Chiang P.N., 2008. Mineralogy and occurrence of glauconite in central Taiwan.Applied Clay Science, 42(1), 74-80.
[25]
Chattoraj S.L., Banerjee S., Saraswati P.K., 2009. Glauconites from the Late Palaeocene-Early Eocene Naredi Formation, western Kutch and their genetic implications.Journal of the Geological Society of India, 73(4), 567-574.
[26]
Courtillot V., Féraud G., Maluski H., Vandamme D., Moreau M.G., Besse J., 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary.Nature, 333(6176), 843-846.
[27]
Dasgupta S., Chaudhuri A.K., Fukuoka M., 1990. Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications.Journal of Sedimentary Petrology, 60(2), 277-281.
[28]
Deb S.P., Fukuoka M., 1998. Fe-illites in a Proterozoic deep marine slope deposit in the Penganga Group of the Pranhita Godavari Valley: Their origin and environmental significance.The Journal of Geology, 106(6), 741-749.
[29]
D'Emic M.D., Wilson J.A., Chatterjee S., 2009. The titanosaur (Dinosauria: Sauropoda) osteoderm record: Review and first definitive specimen from India.Journal of Vertebrate Paleontology, 29(1), 165-177.
[30]
Dogra N.N., Singh R.Y., Kulshrestha S.K., 1988. Palynological evidence on the age of Jabalpur and Lameta Formations in the type area.Current Science, 57(17), 954-956.
[31]
Eder V.G., Martín-Algarra A., Sánchez-Navas A., Zanin Y.N., Zamirailova A.G., Lebedev Y.N., 2007. Depositional controls on glaucony texture and composition, Upper Jurassic, West Siberian Basin.Sedimentology, 54(6), 1365-1387.
[32]
El Albani A., Meunier A., Fürsich F., 2005. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France).Terra Nova, 17(6), 537-544.
[33]
Elderfield H., Pagett R., 1986. REE in ichthyoliths: Variations with redox conditions and depositional environment.Science of the Total Environment, 49, 175-197.
[34]
Guimaraes E.M., Velde B., Hillier S., Nicot E., 2000. Diagenetic/anchimetamorphic changes on the Proterozoic glauconite and glaucony from the Paranoá Group, mid-western Brazil.Revista Brasileira de Geociencias, 30(3), 363-366.
[35]
Hogg C.S., Meads R.E., 1970. The Mössbauer spectra of several micas and related minerals.Mineralogical Magazine, 37(289), 606-614.
[36]
Hower J.,1961. Some factors concerning the nature and origin of glauconite.American Mineralogist, 46(3), 313-334.
[37]
Huggett J.M., Gale A.S., 1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK.Journal of the Geological Society, 154(5), 897-912.
[38]
Ivanovskaya T.A., Gor’kova N.V., Karpova G.V., Pokrovskaya E.V., 2006. Phyllosilicates (glauconite, illite, and chlorite) in terrigenous sediments of the Arymas Formation (Olenek High).Lithology and Mineral Resources, 41(6), 547-569.
[39]
Jaeger J.-J., Courtillot V., Tapponnier P., 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision.Geology, 17(4), 316-319.
[40]
Jarrar G., Amireh B., Zachmann D., 2000. The major, trace and rare earth element geochemistry of glauconites from the Early Cretaceous Kurnub Group of Jordan.Geochemical Journal, 34(3), 207-222.
[41]
Kelly J.C., Webb J.A., 1999. The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: Petrographic and geochemical evidence.Sedimentary Geology, 125(1-2), 99-114.
[42]
Kotlicki A., Szczyrba J., Wiewióra A., 1981. Mössbauer study of glauconites from Poland.Clay Minerals, 16(3), 221-230.
[43]
Kumar S., Singh M.P., Mohabey D.M., 1997. Field Guidebook. Field Meeting and Group Discussion on Cretaceous Environmental Change in East and South Asia, IGCP.
[44]
Kumar S., Tandon K.K., 1977. A note on the bioturbation in the Lameta beds, Jabalpur area, Madhya Pradesh.Geophytology, 7(2), 135-138.
[45]
Kumar S., Tandon K.K., 1978. Thalassinoides in the mottled nodular beds, Jabalpur area, Madhya Pradesh. Current Science, 47(2), 52-53.
[46]
Kumar S., Tandon K.K., 1979. Trace fossils and environment of deposition of the sedimentary succession of Jabalpur, Madhya Pradesh.Journal of the Geological Society of India, 20(3), 103-106.
[47]
Li Y., Zhao L.S., Chen Z.Q., Algeo T.J., Cao L., Wang X.D., 2017. Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite.Palaeogeography, Palaeoclimatology, Palaeoecology, 486, 6-16.
[48]
Machhour L., Philip J., Oudin J.-L., 1994. Formation of laminite deposits in anaerobic-dysaerobic marine environments.Marine Geology, 117, 287-302.
[49]
McConchie D.M., Ward J.B., McCann V.H., Lewis D.W., 1979. A Mössbauer investigation of glauconite and its geological significance.Clays and Clay Minerals, 27(5), 339-348.
[50]
McLennan S.M.,2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust.Geochemistry, Geophysics, Geosystems, 2(4), 1021.
[51]
Mei M.X., Yang F.J., Gao J.H., Meng Q.F., 2008. Glauconites formed in the high-energy shallow-marine environment of the Late Mesoproterozoic: Case study from Tieling Formation at Jixian Section in Tianjin, North China.Earth Science Frontiers, 15(4), 146-158.
[52]
Meunier A., El Albani A., 2007. The glauconite-Fe-illite-Fe-smectite problem: A critical review.Terra Nova, 19(2), 95-104.
[53]
Nozaki Y.,2001. Rare earth elements and their isotopes in the ocean. In: Steele, J.H., Thorpe, S.A., Turekian, K.K. (Eds.), Encyclopedia of Ocean Sciences. Academic Press, London, pp. 2354-2366.
[54]
Odin G.S., Matter A., 1981. De glauconiarum origine.Sedimentology, 28(5), 611-641.
[55]
Odom I.E.,1984. Glauconite and celadonite minerals. In: Bailey, S.W. (Ed.), Micas Reviews in Mineralogy and Geochemistry 13. Mineralogical Society of America, Washington DC, pp. 554-572.
[56]
Pascoe E.H.,1950. A Manual of the Geology of India and Burma, Third Edition. Government of India, Calcutta, volume I.
[57]
Prasad G.V.R., Verma V., Grover P., Priyadarshini R., Sahni A., Lourembam R.S., 2016. Isolated archosaur teeth from the green sandstone capping the Coralline Limestone (Bagh Group) of the Narmada valley: Evidence for the presence of pre-Late to Late Maastrichtian abelisaurids in India.Island Arc, 25(6), 410-420.
[58]
Rolf R.M., Kimball C.W., Odom I.E., 1977. Mössbauer characteristics of Cambrian glauconite, central U.S.A.Clays and Clay Minerals, 25(2), 131-137.
[59]
Sahni A., Bajpai S., 1988. Cretaceous-Tertiary boundary events: The fossil vertebrate, palaeomagnetic and radiometric evidence from Peninsular India.Journal of the Geological Society of India, 32(5), 382-396.
[60]
Salil M.S., Shrivastava J.P., Pattanayak S.K., 1997. Similarities in the mineralogical and geochemical attributes of detrital clays of Maastrichtian Lameta Beds and weathered Deccan basalt, central India.Chemical Geology, 136(1-2), 25-32.
[61]
Sánchez-Navas A., Martín-Algarra A., Eder V., Jagannadha Reddy B., Nieto F., Zanin Y.N., 2008. Color, mineralogy and composition of Upper Jurassic West Siberian glauconite: Useful indicators of paleoenvironment.Canadian Mineralogist, 46(5), 1249-1268.
[62]
Sarkar S., Choudhuri A., Banerjee S., Van Loon A.J., Bose P.K., 2014. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India.Geologos, 20(2), 89-103.
[63]
Tandon S.K.,2000. Spatio-temporal patterns of environmental changes in Late Cretaceous sequences of central India. In: Okada, H., Mateer, N.J. (Eds.), Cretaceous Environments of Asia. Developments in Palaeontology and Stratigraphy, Vol. 17. Elsevier, Amsterdam, pp. 225-241.
[64]
Tandon S.K., Andrews J.E., 2001. Lithofacies associations and stable isotopes of palustrine and calcrete carbonates: Examples from an Indian Maastrichtian regolith.Sedimentology, 48(2), 339-355.
[65]
Tang D.J., Shi X.Y., Ma J.B., Jiang G.Q., Zhou X.Q., Shi Q., 2017. Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: An example from the Mesoproterozoic Tieling Formation in North China.Precambrian Research, 294(Supplement C), 214-229.
[66]
Thompson G.R., Hower J., 1975. The mineralogy of glauconite.Clays and Clay Minerals, 23(4), 289-300.
[67]
Tripathi S.C.,2005. Geological and palaeoenvironmental appraisal of Maastrichtian Lameta sediment of Lower Narmada Valley, western India and their regional correlation.Gondwana Geological Magazine, 8, 29-35.
[68]
Tripathi S.C.,2006. Geology and evolution of the Cretaceous infratrappean basins of Lower Narmada Valley, western India.Journal of the Geological Society of India, 67(4), 459-468.
[69]
Velde B.,1985. Clay Minerals — A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, Vol. 40. Elsevier, Amsterdam.
[70]
Venkatesan T.R., Pande K., Gopalan K., 1993. Did Deccan volcanism pre-date the Cretaceous/Tertiary transition?Earth and Planetary Science Letters, 119(1-2), 181-189.
[71]
Wigley R., Compton J.S., 2007. Oligocene to Holocene glauconite-phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa.Deep Sea Research Part II: Topical Studies in Oceanography, 54(11), 1375-1395.
[72]
Wright J., Schrader H., Holser W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite.Geochimica et Cosmochimica Acta, 51(3), 631-644.
[73]
Zhao L.S., Chen Z.Q., Algeo T.J., Chen J.B., Chen Y.L., Tong J.N., Gao S., Zhou L., Hu Z.C., Liu Y.S., 2013. Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?Global and Planetary Change, 105, 135-151.