[1] Absar N., Arunlal S., Neethu S., 2011. Alluvial fan and braided ?uvial deposition of Mio-Pliocene Cuddalore sandstone Formation: Evidence from facies analysis at Pondicherry area. In: National Seminar on “Modern and Paleo Sediments: Implications to Climate, Water Re- sources and Environmental Changes & XXVIII Convention of Indian Association of Sedimentologists”, pp. 49-50. Abstract Volume.
[2] Absar N., Nizamudheen B.M., Augustine S., 2016. Petrog- raphy, clay mineralogy and geochemistry of clastic sedi- ments of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for provenance and tectonic setting.Journal of Applied Geochemistry, 18(3), 237-250.
[3] Absar N., Raza M., Roy M., Naqvi S.M., Roy A.K.,2009. Composition and weathering conditions of Paleoprotero- zoic upper crust of Bundelkhand Craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Research, 168, 313-329. https://doi.org/10.1016 j.precamres.2008.11.001.
[4] Absar N., Sreenivas B., 2015. Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes. International Geology Review, 57, 134-158. https://doi.org/10.1080/00206814.2014.999355.
[5] Akinlotan O.O., Adepehin E.J., Rogers G.H., Drumm E.C.,2021. Provenance, palaeoclimate and palaeoenviron- ments of a non-marine Lower Cretaceous facies: Petro- graphic evidence from the wealden succession. Sedimentary Geology, 415, 105848. https://doi.org/10.1016/j.sedgeo.2020.105848.
[6] Alam M.,1989. Geology and depositional history of Ceno- zoic sediments of the Bengal Basin of Bangladesh.Palae- ogeography, Palaeoclimatology, Palaeoecology, 69, 125-139.
[7] Allen M.B., Armstrong H.A., 2012. Reconciling the inter- tropical convergence zone, Himalayan/Tibetan tec- tonics, and the onset of the Asian monsoon system.Journal of Asian Earth Sciences, 44, 36-47.
[8] Anbuselvan N., Nathan D.S., 2020. Clay minerals and organic matter in shelf sediments off Coromandel Coast of India: Implications for provenance, transportation and depositional processes.Continental Shelf Research, 198, 104097.
[9] Armstrong H.A., Allen M.B., 2011. Shifts in the intertrop- ical convergence zone, Himalayan exhumation and Late Cenozoic climate.Geology, 39, 11-14.
[10] Armstrong-Altrin J.S.,2020. Detrital zircon UePb geochro- nology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment. Journal of Palaeo- geography, 9(1), 1-27. https://doi.org/10.1186 s42501-020-00075-9.
[11] Armstrong-Altrin J.S., Botello A.V., Villanueva S.F., Soto L.A., 2019. Geochemistry of surface sediments from the northwestern Gulf of Mexico: Implications for provenance and heavy metal contamination. Geological Quarterly, 63, 522-538. https://doi.org/10.7306/gq.1484.
[12] Armstrong-Altrin J.S., Lee Y.I., Verma S.P., Ramasamy S., 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implica- tions for provenance, weathering, and tectonic setting.Journal of sedimentary Research, 74(2), 285-297.
[13] Armstrong-Altrin J.S., Machain-Castillo M.L., Rosales-Hoz L., Carranza-Edwards A., Sanchez-Cabeza J.A., Ruíz-Fernández A.C., 2015. Provenance and depositional history of continental slope sediments in the south-western Gulf of Mexico unraveled by geochemical anal- ysis.Continental Shelf Research, 95, 15-26.
[14] Armstrong-Altrin J.S., Ramos-Vázquez M.A., Hermene-gildo-Ruiz N.Y., Madhavaraju J., 2021. Microtexture and UePb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico. Geological Journal, 56, 2418-2438. https://doi.org/10.1002/gj.3984.
[15] Armstrong-Altrin J.S., Verma S.P., 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tec- tonic settings.Sedimentary Geology, 1(177), 115-129.
[16] Asiedu D.K., Agoe M., Amponsah P.O., Nude P.M., Anani C.Y.,2019. Geochemical constraints on prove- nance and source area weathering of metasedimentary rocks from the Paleoproterozoic(~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton. Geodinamica Acta, 31(1), 27-39. https://doi.org/10.1080/09853111.2019.1670414.
[17] Awasthi N.,1977. Revision ofHopeoxylon indicum navale and Shoreoxylon speciosum navale from the Cuddalore series near Pondicherry. Palaeobotanist, 24, 102-107.
[18] Azhar-Ul-Haq M., Balakrishnan S., Bhutani R., Dash J.K., 2021. Causal relationship between mafic magma under- plating and migmatization of arc crust: Evidence from the Block of Southern Granulite Terrane, India. Journal Earth System Science, 130(3), 1-34. https://doi.org/10.1007/s12040-021-01628-9.
[19] Baldermann A., Abdullayev E., Taghiyeva Y., Alasgarov A., Javad-Zada Z., 2020. Sediment petrography, mineralogy and geochemistry of the Miocene Islam Davg Section(Eastern Azerbaijan): Implications for the evolution of sediment provenance, palaeoenvironment and (post-) depositional alteration patterns. Sedimentology, 67, 152-172. https://doi.org/10.1111/sed.12638.
[20] Bankole O.M.,El Albani, A., Meunier, A., Poujol, M., Bekker, A., 2020. Elemental geochemistry and Nd isotope constraints on the provenance of the basal siliciclastic succession of the Middle Paleoproterozoic Francevillian Group, Gabon. Precambrian Research, 348, 105874. https://doi.org/10.1016/j.precamres.2020.105874.
[21] Basu A.,1985. Reading provenance from detrital quartz. In: Zuffa, G.G. (Ed.), Provenance of Arenites. NATO, ASI Se- ries (Series C: Mathematical and Physical Sciences), vol. 148. Springer, Dordrecht. https://doi.org/10.1007/978- 94-017-2809-6_11.
[22] Basu A.,2017. Evolution of siliciclastic provenance in- quiries: A critical appraisal. In: Mazumder, Rajat (Ed.), Sediment Provenance, Chapter 2. Elsevier Amsterdam, Netherlands, pp. 5-23.
[23] Basu A., Bickford M.E., Deasy R., 2016. Inferring tectonic provenance of siliciclastic rocks from the chemical com- positions: A dissent.Sedimentary Geology, 336, 26-35.
[24] Bhat M.I., Ghosh S.K., 2001. Geochemistry of 2.51Ga old Rampur Group pelites, western Himalayas: Implications for their provenance and weathering.Precambrian Research, 108, 1-16.
[25] Bhatia M.R.,1983. Plate tectonics and geochemical compo- sition of sandstones.The Journal of Geology, 91, 611-627.
[26] Bhatia M.R., Crook K.A.W., 1986. Trace element character- istics of graywackes and tectonic setting discrimination of sedimentary basins.Contributions to Mineralogy and Petrology, 92, 181-193.
[27] Borges C.C.A., Toledo, C.L.B., Silva, A.M., Chemale, F., dos Santos, B.A., Figueiredo, F.L., Zacchi, E.N.P., 2021. Unraveling a hidden Rhyacian magmatic arc through provenance of metasedimentary rocks of the Crixás greenstone belt, Central Brazil. Precambrian Research,353, 106022. https://doi.org/10.1016/j.precamres.2020.106022.
[28] Brozovic N., Burbank D.W., 2000. Dynamic ?uvial systems and gravel progradation in the Himalayan foreland.GSA Bulletin, 112(3), 394-412.
[29] Cawood P.A., Hawkesworth C.J., Dhuime B., 2012. Detrital zircon record and tectonic setting. Geology, 40(10), 875-878. https://doi.org/10.1130/G32945.1.
[30] Cawood P.A., Nemchin A.A., Freeman M., Sircombe K., 2003. Linking source and sedimentary basin: Detrital zircon record of sediment ?ux along a modern river sys- tem and implications for provenance studies.Earth and Planetary Science Letters, 210, 259-268.
[31] Chakrabarti R., Basu A.R., Chakrabarti A., 2007. Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, Central India.Precambrian Research, 159, 260-274.
[32] Chand S., Radhakrishna M., Subrahmanyam C., 2001. India-east Antarctica conjugate margins rift-shear tec- tonic setting inferred from gravity and bathymetry data.Earth and Planetary Science Letters, 185, 225-236.
[33] Chaudhuri A., Banerjee S., Le Pera E., 2018. Petrography of Middle Jurassic to Early Cretaceous sandstones in the kutch basin, western India: Implications on provenance and basin evolution.Journal of Palaeogeography, 7(1), 1-14.
[34] Chaudhuri A., Banerjee S., Prabhakar N., Das A., 2020b. The use of heavy mineral chemistry in reconstructing provenance: A case study from Mesozoic sandstones of Kutch Basin, India. Geological Journal, 55, 7807-7817. https://doi.org/10.1002/gj.3922.
[35] Chaudhuri A., Chatterjee A., Banerjee S., Ray J., 2021. Tracing multiple sources of sediments using trace element and Nd isotope geochemistry: Provenance of the Mesozoic succession in the Kutch Basin, western India. Geological Magazine, 158(2), 359-374. https://doi.org/10.1017/S0016756820000539.
[36] Chaudhuri A., Das K., Banerjee S., Fitzsimons I.C., 2020a. Detrital zircon and monazite track the source of Mesozoic sediments in Kutch to rocks of Late Neoproter- ozoic and Early Palaeozoic orogenies in northern India.Gondwana Research, 80, 188-201.
[37] Chebykin E.P., Edgington D.N., Grachev M.A., Zheleznyakova T.O., Vorobyova S.S., Kulikova N.S., Azarova I.N., Khlystov O.M., Goldberg E.L., 2002. Abrupt increase in precipitation and weathering of soils in East Siberia coincident with the end of the last glacia- tion (15 cal kyr BP).Earth and Planetary Science Letters, 200, 167-175.
[38] Chougong D.T., Bessa A.Z.E., Ngueutchoua G., Yongue R.F., Ntyam S.C., Armstrong-Altrin J.S., 2021. Mineralogy and geochemistry of Lobé River sedi-ments, SW Cameroon: Implications for provenance and weathering.Journal of African Earth Sciences, 183, 104320.
[39] Clift P.D., Hodges K.V., Heslop D., Hannigan R., Van Long H., Calves G., 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity.Nature Geoscience, 1, 875-880.
[40] Clift P.D., Layne G.D., Blusztajn J., 2004. Marine sedimen- tary evidence for Monsoons trengthening, Tibetan uplift and drainage evolution in East Asia. In: Clift, P., Kuhnt, W., Wang, P., Hayes, D. (Eds.), ContinenteOcean Interactions within East Asian Marginal Seas, vol. 149. American Geophysical Union, Washington, pp. 255-282.
[41] Collins A.S., Patranabis-Deb S., Alexander E., Bertram C.N., Falster G.M., Gore R.J.,Mackintosh J., Dhang P.C., Saha D., Payne J.L., Jourdan F., 2015. Detrital mineral age, radiogenic iso- topic stratigraphy and tectonic significance of the Cudda- pah Basin, India.Gondwana Research, 28(4), 1294-1309.
[42] Condie K.C.,1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales.Chemical Geology, 104, 1-37.
[43] Condie K.C., Lee D., Farmer G.L., 2001. Tectonic setting and provenance of neoproterozoic uinta mountain and big cottonwood groups, northern Utah: Constraints from geochemistry, Nd isotopes, and detrital modes.Sedimen- tary Geology, 141(142), 443-464.
[44] Copley A., Avouac J.-P., Royer J.-Y., 2010. India-Asia colli- sion and the Cenozoic slowdown of the Indian plate: Im- plications for the forces driving plate motions. Journal of Geophysical Research, 115, B03410. https://doi.org/10.1029/2009JB006634.
[45] Cullers R.L.,1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of PennsylvanianePermian age from uplifted continen- tal blocks in Colorado to platform sediment in Kansas, USA.Geochimica et Cosmochimica Acta, 58(22), 4955-4972.
[46] Cullers R.L.,2000. The geochemistry of shales, siltstones and sandstones of PennsylvanianePermian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181-203. https://doi.org/10.1016 S0024-4937(99)00063-8.
[47] Cullers R.L., Podkovyrov V.N., 2000. Geochemistry of Mes- oproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling.Precambrian Research, 104, 77-93.
[48] Dash J.K., Pradhan S.K., Bhutani R., Balakrishnan S., Chandrasekaran G., Basavaiah N., 2013. Paleomagne- tism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: Constraints on the po- sition and extent of dharwar craton in the paleoprotero-zoic.Precambrian Research, 228, 164-176.
[49] Dey S., Nandy J., Choudhary A.K., Liu Y., Zong K., 2014. Origin and evolution of granitoids associated with the Kadiri greenstone belt, eastern Dharwar Craton: A history of orogenic to anorogenic magmatism.Precambrian Research, 246, 64-90.
[50] Dickinson W.R.,1988. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedi- mentary basins. In: New Perspectives in Basin Analysis. Springer, New York, pp. 3-25. https://doi.org/10.1007 978-1-4612-3788-4_1.
[51] Dickinson W.R., Suczek C.A.,1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63, 2164-2182. Etimita, O.O., Beka, F.T., 2020. Heavy mineral analysis of Eocene sands and sandstones of Nanka Formation, Ceno- zoic Niger Delta petroleum province. Geology, Ecology, and Landscapes, 4(4), 251-256. https://doi.org/10.1080/24749508.2019.1633218.
[52] Fedo C.M., Nesbitt H.W., Young G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance.Geology, 23, 921-924.
[53] Feng R., Kerrich R., 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061-1081. https://doi.org/10.1016/0016-7037(90)90439-R.
[54] Gaillardet J., Dupré B., Alle、gre C.J., 1999. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63(23-24), 4037-4051. https://doi.org/10.1016/S0016-7037(99)00307-5.
[55] Galy V., France-Lanord C., Beyssac O., Faure P., Kudrass H., Palhol F., 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168), 407-410. https://doi.org/10.1038/nature06273.
[56] Ganai J.A., Rashid S.A., 2019. Anoxia and ?uctuating climate recorded from the DevonianeCarboniferous black shales, Tethys Himalaya, India: A multi-proxy approach.International Journal of Earth Sciences, 108(3), 863-883.
[57] Gao S., Wedepohl K.H., 1995. The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposi- tion, age and importance of their granitic sources.Earth and Planetary Science Letters, 133(1-2), 81-94.
[58] Gassama N., Kasper H.U., Dia A., Cocirta C., Bouhnik- LeCoz M., 2012. Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India): Trace element signature.Applied geochemistry, 27(3), 715-728.
[59] Gehrels G., Valencia V., Ruiz J., 2008. Enhanced preci- sion, accuracy, efficiency, and spatial resolution of UePb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry Geophysics Geosystems, 9, 3. https://doi.org/10.1029 2007GC001805.
[60] Gehrels G.E., Stewart J.H., 1998. Detrital zircon UePb geochronology of Cambrian to Triassic miogeoclinal strata of Sonora, Mexico.Journal of Geophysical Research, 103, 2471-2487.
[61] Govindraju S.V.,1987. Bauxite Deposit of Yercaud Salem District Tamilnadu. Ph.D. Thesis. Periyar University, India, 88 pp. http://hdl.handle.net/10603/23308.
[62] GSI, 2006. Geology and Mineral Resources of the States of India, Part-VI, Tamil Nadu and Pondicherry, Misc. Pub. No. 30. Geological Survey of India, p. 71.
[63] Guo Q.Q., Xiao W.J., Windley B.F., Mao Q.G., Han C.M., Qu J.F., Ao S.J., Li J.L., Song D.F., Yong Y.,2012. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences, 49, 54-68. https://doi.org/10.1016/j.jseaes.2011.03.013.
[64] Guo Z.T., Ruddiman W.F., Hao Q.Z., Wu H.B., Qiao Y.S., Zhu R.X., Peng S.Z., Wei J.J., Yuan B.Y., Liu T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.Nature, 416, 159-163.
[65] Hardy R., Tucker M.E., 1988. X-ray powder diffraction of sediments. In: Tucker, M.E. (Ed.), Techniques in Sedimen- tology, vol. 484. Blackwell Scientific Publications, pp. 191-228.
[66] Hayashi K.-I., Fujisawa H., Holland H.D., Ohmoto H., 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochi- mica Acta, 61, 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7.
[67] Herron M.M.,1988. Geochemical classification of terrige- nous sands and shales from core or log data.Journal of Sedimentary Petrology, 58, 820-829.
[68] Hossain M.Z., Roser B.P., Kimura J.-I.,2010. Petrography and whole-rock geochemistry of the Tertiary Sylhet suc- cession, northeastern Bengal Basin, Bangladesh: Prove- nance and source area weathering. Sedimentary Geology, 228, 171-183. https://doi.org/10.1016/j.sedgeo.2010.04.009.
[69] Hussain S.H., Al-Juboury A.I., Al-Haj M.A., Armstrong- Altrin J.S., Al-Lhaebi S.F., 2021. Mineralogy and geochemistry of the Late Triassic Baluti Formation, northern Iraq.Journal of African Earth Sciences, 181, 104243.
[70] Ji H., Tao H., Qiu J., Wei H.,2020. Provenance of Middle Jurassic clastic rocks from the Bogda area of Eastern Tianshan and its implications. International Geology Re- view, 62(10), 1319-1342. https://doi.org/10.1080/00206814.2019.1647119.
[71] Khan A.F., Wani S.A., Majid A., Ahmad A.H.M., 2007. Pet- rofacies and diagenetic features of Cuddalore Sandstone Neyveli Area, Tamil Nadu.Journal Indian Asociation of Sedimentologists, 26, 1-13.
[72] Khan M.N.,1984. Geochemistry and Genesis of the Bauxite Deposit Around Yercaud, District Salem, Tamilnadu. Ph.D. Thesis. Aligrah Muslim University, India, 327 pp. http://hdl.handle.net/10603/52595.
[73] Khan T., Sarma D.S., Khan M.S., 2020b. Geochemical study of the Neoproterozoic clastic sedimentary rocks of the Khambal Formation (Sindreth Basin), Aravalli Craton, NW Indian Shield: Implications for paleoweather- ing, provenance, and geodynamic evolution.Geochem- istry, 80(1), 125596.
[74] Khan T., Sarma D.S., Somasekhar V., Ramanaiah S., Reddy N.R., 2020a. Geochemistry of the Palaeoprotero- zoic quartzites of Lower Cuddapah Supergroup, South India: Implications for the palaeoweathering, prove- nance, and crustal evolution.Geological Journal, 55(2), 1587-1611.
[75] Kump L.R., Brantley S.L., Arthur M.A., 2000. Chemical weathering, atmospheric CO2, and climate.Annual Re- view of Earth and Planetary Sciences, 28(1), 611-667.
[76] Kundu A., Matin A., Eriksson P.G., 2016. Petrography and geochemistry of the Middle Siwalik sandstones (Tertiary) in understanding the provenance of sub-Himalayan sediments in the Lish River Valley, West Bengal, India. Arabian Journal of Geosciences, 9(2), 162. https://doi.org/10.1007/s12517-015-2261-1.
[77] Large R.R., Mukherjee I., Zhukova I., Corkrey R., Stepanov A., Danyushevsky L.V.,2018. Role of upper- most crustal composition in the evolution of the Precam- brian oceaneatmosphere system. Earth and Planetary Science Letters, 487, 44-53. https://doi.org/10.1016 j.epsl.2018.01.019.
[78] Le Hir G., Donnadieu Y., Goddéris Y., Pierrehumbert R.T., Halverson G.P., Macouin M., Nédélecb A., Ramstein G., 2009. The snowball Earth aftermath: Exploring the limits of continental weathering processes.Earth and Planetary Science Letters, 277, 453-463.
[79] Li C., Yang S.Y., 2010. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?American Journal of Science, 310, 111-127.
[80] Lupker M., France-Lanord C., Galy V., Lavé J., Gaillardet J., Gajurel A.P., Guilmette C., Rahman M., Singh S.K., Sinha R., 2012. Predominant ?oodplain over mountain weathering of Himalayan sedi- ments (Ganga Basin).Geochimica et Cosmochimica Acta, 84, 410-432.
[81] Madhavaraju J.,2015. Geochemistry of Campanian-Maas- trichtian sedimentary rocks in the Cauvery Basin, South India: Constrains on paleoweathering, provenance and end Cretaceous environments. In: Ramkumar, M. (Ed.), Chemostratigraphy: Concepts, Techniques and Applica- tions. Elsevier Special Volume, pp. 185-214. https://doi.org/10.1016/B978-0-12-419968-2.00008-X.
[82] Madhavaraju J., Armstrong-Altrin J.S., Pillai R.B., Pi- Puig T., 2020a. Geochemistry of sands from the Huata- bampo and Altata beaches, Gulf of California, Mexico. Geological Journal, 56, 1-20. https://doi.org/10.1002 gj.3864.
[83] Madhavaraju J., Erik Ramírez-Montoya E., Monreal R., González-León C.M., Pi-Puig T., Espinoza-Maldonado I.G., Grijalva-Noriega F.J., 2016. Paleocli- mate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry.Revista Mexi- cana de Ciencias Geologicas, 33, 34-48.
[84] Madhavaraju J., Pacheco-Olivas S.A., Gonzalez- Leon C.M., Espinoza-Maldonado I.G., Sanchez- Medrano P.A., Villanueva-Amadoz U., Monreal R., Pi- Puig T., Ramirez-Montoya E., Grijalva-Noriega F.J., 2017. Clay mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Si- erra San José section, Sonora, Mexico.Journal of South American Earth Sciences, 76, 397-411.
[85] Madhavaraju J., Rajendra S.P., Lee Y.I., Montoya E.R., Ramasamy S., SantaCruz R.L., 2020b. Mineralogy and geochemistry of clastic sediments of the Terani Forma- tion, Cauvery Basin, southern India: Implications for pale- oweathering, provenance and tectonic setting. Geosciences Journal, 24, 651-667. https://doi.org/10.1007/s12303-019-0047-2.
[86] Madhavaraju J., Saucedo-Samaniego J.C., Löser H., Espi-noza-Maldonado I.C., Solari L., Monreal R., Grijalva-Noriega F.J., Jaques-Ayala C., 2019. Detrital zircon re- cord of Mesozoic volcanic arcs in the Lower Cretaceous Mural Limestone, north western Mexico.Geological Jour- nal, 54, 2621-2645.
[87] Madhavaraju J., Lee Y.I., 2010. In?uence of Deccan Volca- nism in the sedimentary rocks of Late Maastrichtian-Dan- ian age of Cauvery Basin, southeastern India: Constraints from geochemistry. Current Science, 98(4), 528-537. https://www.jstor.org/stable/24111704.
[88] Malarkodi N., Patel S.J., Fayazudeen P.J., Mallikarjuna U.B., 2009. Palaeoenvironmental signifi- cance of trace fossils from the Palaeocene sediments of the Pondicherry Area, South India.Journal of the Geolog- ical Society of India, 74, 738-748.
[89] Mandaokar B.D., Mukherjee D., 2014. Palynostratigraphy of the Cuddalore Formation (early Miocene) of Panruti, Tamil Nadu, India.Journal of the Palaeontological Soci- ety of India, 59(1), 69-80.
[90] Manikyamba C., Kerrich R., 2006. Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: First cycle volcanogenic sedimentary rocks in an intraoceanic arcetrench complex.Geochimica et Cosmo- chimica Acta, 70(18), 4663-4679.
[91] Manikyamba C., Kerrich R., Gonzalez-Alvarez I., Mathur R., Khanna T.C., 2008. Geochemistry of Paleo- proterozoic black shales from the Intracontinental Cud- dapah Basin, India: Implications for provenance, tectonic setting, and weathering intensity.Precambrian Research, 162(3-4), 424-440.
[92] McDonough W.F., Sun S.S., 1995. The composition of the Earth.Chemical Geology, 120, 223-253.
[93] McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, prove- nance, and tectonics. In: Geological Society of America Special Papers. Geological Society of America, pp. 21-40. https://doi.org/10.1130/SPE284-p21.
[94] McLennan S.M., Hemming S., Taylor S.R., Erikson K.A., 1995. Early Proterozoic crustal evolution: Geochemical and NdePb isotopic evidence from metasedimentary rocks southwestern North America.Geochimica et Cos- mochimica Acta, 59, 1153-1173.
[95] McLennan S.M., Taylor S.R., McCulloch M.T., Maynard J.B., 1990. Geochemical and NdeSr isotopic composition of deep sea turbitites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochi- mica Acta, 54, 2015-2050. https://doi.org/10.1016 0016-7037(90)90269-Q.
[96] Miall A.D.,1985. Architectural-element analysis: A new method of facies analysis applied to ?uvial deposits.Earth-Science Reviews, 22, 261-308.
[97] Molnar P., England P., Martinod J., 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon.Re- views of Geophysics, 31, 357-396.
[98] Mondal M.E.A., Wani H., Mondal B., 2012. Geochemical signature of provenance, tectonics and chemical weath- ering in the Quaternary ?ood plain sediments of the Hin- don River, Gangetic Plain, India.Tectonophysics, 566, 87-94.
[99] Moore D.M., Reynolds R.C., 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals, second ed. Oxford University Press, Oxford/New York. 332 pp.
[100] Morton A.C.,1985. Heavy minerals in provenance studies. In: Zuffa, G.G. (Ed.), Provenance of Arenites. NATO, ASI Series (Series C: Mathematical and Physical Sciences), vol. 148. Springer, Dordrecht. https://doi.org/10.1007 978-94-017-2809-6_12.
[101] Morton A.C.,1991. Geochemical studies of detrital heavy minerals and their application to provenance research. Geological Society, London, Special Publications, 57, 31-45. https://doi.org/10.1144/GSL.SP.1991.057.01.04. Nagendra, R., Reddy, A.N., 2017. Major geologic events of the Cauvery Basin, India and their correlation with global signatures d A review. Journal of Palaeogeography, 6(1), 69-83. https://doi.org/10.1016/j.jop.2016.09.002.
[102] Nesbitt H.W., Markovics G., Price R.C., 1980. Chemical processes affecting alkalis and alkaline earths during con- tinental weathering. Geochimica et Cosmochimica Acta, 44, 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5.
[103] Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemis- try of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0.
[104] Nesbitt H.W., Young G.M., 1984. Prediction of some weath- ering trends of plutonic and volcanic rocks based on ther- modynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3.
[105] Nie J., Horton B.K., Saylor J.E., Mora A., Mange M., Garzione C.N., Basu A., Moreno C.J., Caballero V., Parra M.,2012. Integrated provenance analysis of a convergent retroarc foreland system: UePb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Reviews, 110, 111-126. https://doi.org/10.1016/j.earscirev.2011.11.002.
[106] Ossa Ossa,F., Hofmann, A., Ballouard, C., Voster, C., Schoenberg, R., Fiedrich, A., Mayaga-Mikolo, F., Bekker, A., 2020. Constraining provenance for the uranif- erous Paleoproterozoic Francevillian Group sediments (Gabon) with detrital zircon geochronology and geochem- istry. Precambrian Research, 343, 105724. https://doi.org/10.1016/j.precamres.2020.105724.
[107] Perri F.,2018. Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterra- nean area: A review of geochemical proxies. Geological Magazine, 155, 944-954. https://doi.org/10.1017/S0016756816001205.
[108] Perri F.,2020. Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical prox- ies: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109873. https://doi.org/10.1016/j.palaeo.2020.109873.
[109] Powell C.M.C.A., Roots S.R., Veevers J.J., 1988. Pre break up continental extension in east Gondwanaland and the early opening of the Indian Ocean. Tectonophysics, 155, 261-283. https://doi.org/10.1016/0040-1951(88)90269-7.
[110] Privé-Gill C., Thomas H., Lebret P., 1999. Fossil wood of Sindora (Leguminosae, Caesalpiniaceae) from the Oligo- Miocene of Saudi Arabia: Paleobiogeographical consider- ations. Review of Palaeobotany and Palynology, 107, 191-199. https://doi.org/10.1016/S0034-6667(99)00017-2.
[111] Quasim M.A., Khan I., Ahmad A.H.M., 2017. Integrated petrographic, mineralogical, and geochemical study of the Upper Kaimur Group of rocks, Son Valley, India: Impli- cations for provenance, source area weathering and tec- tonic setting. Journal of the Geological Society of India, 90(4), 467-484. https://doi.org/10.1007/s12594-017-0740-6.
[112] Rajagopalan N.,1965. Late Cretaceous and Early Tertiary stratigraphy of Pondicherry, south India.Journal of the Geological Society of India, 6, 104-121.
[113] Rajamanickam V.G.,1968. Heavy mineral studies of the CretaceouseTertiary formations of Pondicherry, South India. In: CretaceouseTertiary Formations of South India, vol. 2. Geological Society of India Memoir, pp. 234-238.
[114] Ramos-Vázquez,M.A., Armstrong-Altrin, J.S., 2019. Sedi-ment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650-675. https://doi.org/10.1016/j.marpetgeo.2019.07.032.
[115] Ranjan N., Banerjee D.M., 2009. Central Himalayan crys- tallines as the primary source for the sandstoneemud- stone suites of the Siwalik Group: New geochemical evidence.Gondwana Research, 16, 687-696.
[116] Rashid S.A., Ahmad S., Singh S.K., Absar N.,2018. Elemental and Sr-Nd isotopic geochemistry of Mesopro- terozoic sedimentary successions from NE Lesser Hima- laya, northern India: Implications for Proterozoic climate and tectonics. Journal of Asian Earth Sciences, 163, 235-248. https://doi.org/10.1016/j.jseaes.2018.05.030.
[117] Rashid S.A., Ganai J.A.,2018. Depositional environments, provenance and paleoclimatic implications of Ordovician siliciclastic rocks of the Thango Formation, Spiti Valley, Tethys Himalaya, northern India. Journal of Asian Earth Sciences, 157, 371-386. https://doi.org/10.1016 j.jseaes.2017.08.010.
[118] Roser B.P., Korsch R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5), 635-650. https://doi.org/10.1086/629071.
[119] Roy P., Balaram V., Kumar A., Satyanarayanan M., Gna- neshwar Rao T., 2007. New REE and trace element data on two kimberlitic reference materials by ICPeMS.Geostandards and Geoanalytical Research, 31(3), 261-273.
[120] Ruddiman W.F.,1997. Tectonics, Uplift and Climate Change. Plenum Publishing Co., New York, 535 pp.
[121] Rudnick R.L., Gao S., 2003. Composition of the continental crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 3. Pergamon, pp. 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4.
[122] Ryan K.M., Williams D.M.,2007. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology, 242, 103-125.
[123] Saha, A., Basu, A.R., Garzione, C.N., Bandyopadhyay, P.K., Chakrabarti, A., 2004. Geochemical and petrological ev- idence for subduction-accretion processes in the Archean Eastern Indian Craton. Earth and Planetary Science Let- ters, 220, 91-106. https://doi.org/10.1016/S0012-821X(04)00056-1. [124] Saha, S., Banerjee, S., Burley, S.D., Ghosh, A., Saraswati, P. K., 2010. The in?uence of ?ood basaltic source terrains on the efficiency of tectonic setting discrimination dia- grams: An example from the Gulf of Khambhat, western India. Sedimentary Geology, 228(1-2), 1-13. https://doi.org/10.1016/j.sedgeo.2010.03.009. [125] Santosh, M., 2020. The Southern Granulite Terrane: A synop- sis. Episodes Journal of International Geoscience, 43(1), 109-123. https://doi.org/10.18814/epiiugs/2020/020006. [126] Sanyal, P., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Sangode, S.J., 2004. MioePliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeography, Palae- oclimatology, Palaeoecology, 205(1-2), 23-41. https://doi.org/10.1016/j.palaeo.2003.11.013. [127] Sanyal, P., Sarkar, A., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Agrawal, S., 2010. Intensification of monsoon, microclimate and asynchronous C4 appear- ance: Isotopic evidence from the Indian Siwalik sedi- ments. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1-2), 165-173. https://doi.org/10.1016/j.palaeo.2010.07.003. [128] Selvaraj, K., Ramasamy, S., 1998. Depositional environ- ment of Cuddalore sandstone formation, Tamil Nadu. The Journal of the Geological Society of India, 51, 803-812. [129] Sharma, A., Rajamani, V., 2000. Weathering of gneissic rocks in the upper reaches of Cauvery River, South India: Impli- cations to neotectonics of the region. Chemical Geology, 166(3-4), 203-223. [130] Sharma, A., Rajamani, V., 2001. Weathering of charnockites and sediment production in the catchment area of the Cauvery River, southern India. Sedimentary Geology, 143(1-2), 169-184. [131] Sheldon, N.D., Retallack, G.J., Tanaka, S., 2002. Geochem- ical climofunctions from North American soils and appli- cation to paleosols across the EoceneeOligocene boundary in Oregon. Journal of Geology, 110, 687-696. Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenviron- mental and paleoclimatic reconstruction using paleosols. Earth-Sciences Reviews, 95, 1-52. [132] Siddhanta, B.K., 1986. The age of Neyveli Lignite with refer- ence to stratigraphy and palynology. Indian Minerals, 40(3), 61-82. [133] Singh, A., Misra, B.K., Singh, B.D., Navale, G.K.B., 1992. The Neyveli lignite deposits (Cauvery Basin), India: Organic composition, age and depositional pattern. Inter- national Journal of Coal Geology, 21, 45-97. https://doi.org/10.1016/0166-5162(92)90035-U. [134] Singh, P., 2009. Major, trace and REE geochemistry of the Ganga River sediments: In?uence of provenance and sedi- mentary processes. Chemical Geology, 266(3-4), 242-255. [135] Singh, P., Rajamani, V., 2001. REE geochemistry of recent clastic sediments from the Kaveri ?oodplains, southern India: Implication to source area weathering and sedi- mentary processes. Geochimica et Cosmochimica Acta, 18(65), 3093-3108. [136] Sinha, S., Islam, R., Ghosh, S.K., Kumar, R., Sangode, S.J., 2007. Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: Implications for source- area weathering, provenance and tectonic setting. Cur- rent Science, 92(8), 1103-1113. https://www.jstor.org/stable/24097629. [137] Subramanian, K.S., Murthy, M.V.N., 1976. Bauxite and hema- tite cappings in the Nilgiris, Tamilnadu d Study from geomorphic angle. Journal of the Geological Society of India, 17, 353-358. [138] Sundaram, R., Henderson, R.A., Ayyasami, K., Stilwell, J.D., 2001. A lithostratigraphic revision and palaeoenviron- mental assessment of the Cretaceous system exposed in the onshore Cauvery Basin, Southern India. Cretaceous Research, 22, 743-762. [139] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London, 311 pp. [140] Tomson, J.K., Rao, Y.B., Kumar, T.V., Choudhary, A.K., 2013. Geochemistry and neodymium model ages of Precam- brian charnockites, Southern Granulite Terrain, India: Constraints on terrain assembly. Precambrian Research, 227, 295-315. https://doi.org/10.1016/j.precamres.2012.06.014. [141] Tomson, J.K., Rao, Y.B., Kumar, T.V., Rao, J.M., 2006. Char- nockite genesis across the ArchaeaneProterozoic terrane boundary in the South Indian Granulite Terrain: Constraints from majoretrace element geochemistry and SreNd iso- topic systematics. Gondwana Research, 10(1-2), 115-127. https://doi.org/10.1016/j.gr.2005.11.023. [142] Uddin, A., Lundberg, N., 1998. Cenozoic history of the Hima- layan-Bengal system: Sand composition in the Bengal basin, Bangladesh. Geological Society of America Bulletin, 110, 497-511. [143] Valdiya, K.S., 1998. Late Quaternary movements and land- scape rejuvenation in southern Karnataka and adjoining Tamil Nadu in southern Indian Shield. Journal of Geolog- ical Society India, 51, 139-166. [144] Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimen- sional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117-133. https://doi.org/10.1016/j.chemgeo.2013.07.014. [145] Verma, S.P., Armstrong-Altrin, J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1-12. https://doi.org/10.1016/j.sedgeo.2015.11.011. [146] Verma, S.P., Díaz-González, L., Armstrong-Altrin, J.S., 2016. Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sedi- ments. Earth Science Informatics, 9(2), 151-165. https://doi.org/10.1007/s12145-015-0244-0. [147] Walczak, A., Belka, Z., 2017. Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes, southern Poland. Gondwana Research, 45, 138-151. https://doi.org/10.1016/j.gr.2017.02.002. [148] Walker, J.C., Hays, P.B., Kasting, J.F., 1981. A negative feed- back mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research: Oceans, 86(C10), 9776-9782. [149] Wang, P., Du, Y., Yu, W., Algeo, T.J., Zhou, Q., Xu, Y., Qi, L., Yuan, L., Pan, W., 2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-inter- glacial transitions in Earth history. Earth-Science Re- views, 201, 103032. https://doi.org/10.1016/j.earscirev.2019.103032. [150] Wang, W., Zhou, M.F., Yan, D.P., Li, J.W., 2012. Depositional age, provenance, and tectonic setting of the Neoproter- ozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research, 192, 107-124. https://doi.org/10.1016/j.precamres.2011.10.010. [151] Wani, H., Mondal, M.E.A., 2016. Geochemical evidence for the Paleoproterozoic arceback arc basin association and its importance in understanding the evolution of the Central Indian Tectonic Zone. Tectonophysics, 690, 318-335. https://doi.org/10.1016/j.tecto.2016.10.001. Watkinson, M.P., Hart, M.B., Joshi, A., 2007. Cretaceous tec- tonostratigraphy and the development of the Cauvery Basin, southeast India. Petroleum Geoscience, 13(2), 181-191. https://doi.org/10.1144/1354-079307-747. [152] Wilson, M.J., 1999. The origin and formation of clay min- erals in soils; past, present and future perspectives. Clay Minerals, 34(1), 7-25. https://doi.org/10.1180/000985599545957. [153] Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401-2416. [154] Wronkiewicz, D.J., Condie, K.C., 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga old continental craton. Geochimica et Cosmochimica Acta, 53, 1534-1549. [155] Wronkiewicz, D.J., Condie, K.C., 1990. Geochemistry and mineralogy of sediments from the Ventersdorp and Trans- vaal Supergroups, South Africa: Cratonic evolution during the Early Proterozoic. Geochimica et Cosmochimica Acta, 54, 343-354. [156] Xu, X.T., Shao, L.Y., Lan, B., Wang, S., Hilton, J., Qin, J.Y., Hou, H.H., Zhao, J., 2020. Continental chemical weath- ering during the Early Cretaceous Oceanic Anoxic Event (OAE1b): A case study from the Fuxin ?uvio-lacustrine basin, Liaoning Province, NE China. Journal of Palaeo- geography, 9, 1-21. https://doi.org/10.1186/s42501-020-00056-y. [157] Yang, C.X., Santosh, M., Tsunogae, T., Shaji, E., Gao, P., Kwon, S., 2021. Global type area charnockites in south- ern India revisited: Implications for Earth's oldest super- continent. Gondwana Research, 94, 106-132. https://doi.org/10.1016/j.gr.2021.03.003. [158] Yang, J.H., Cawood, P.A., Du, Y.S., Feng, B., Yan, J.X., 2014. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records. Geol-ogy, 42(10), 835-838. https://doi.org/10.1130/G35892.1. [159] Young, G.M., Nesbitt, H.W., 1998. Process controlling the distribution of Ti and Al in weathering profiles, siliciclas- tic sediments and sedimentary rocks. Journal of Sedi- mentary Research, 68, 448-455. https://doi.org/10.2110/jsr.68.448. [160] Zhang, Y., Pe-Piper, G., Piper, D.J., 2014. Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61, 383-410. https://doi.org/10.1111/sed.12066. |