[1] Afify A. M.,Sanz-Montero, M. E., & Calvo, J. P., 2018. Differentiation of ironstone types by using rare earth elements and yttrium geochemistry - A case study from the Bahariya region, Egypt. Ore Geology Reviews, 96, 247-261. https://doi.org/10.1016/j.oregeorev.2018.04.019.
[2] Arbiol C., Layne G. D., Zanoni G.,& Šegvić, B., 2021. Characteristics and genesis of phyllosilicate hydrothermal assemblages from Neoproterozoic epithermal Au-Ag mineralization of the Avalon Zone of Newfoundland, Canada. Applied Clay Science, 202, 105960. https://doi.org/10.1016/j.clay.2020.105960
[3] Bailey S. W.,1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals.American Mineralogist, 65, 1-7.
[4] Barale L., D’atri A., Martire L.,2013. The role of microbial activity in the generation of Lower Cretaceous mixed Fe-Oxide-phosphate ooids from the provencal Domain, French Maritime Alps. Journal of Sedimentary Research, 83(2), 196-206. https://doi.org/10.2110/jsr.2013.15.
[5] Beznosov N. V.,1967. Bayosian and Bathonian Sediments of the North Caucasus: Vol. 28/36 (M. R. Pistrak, Ed.). Nedra. (Reference in Russian).
[6] Bhattacharyya D. P., Kakimoto P., 1982. Origin of ferriferous ooids: An sem study of ironstone ooids and bauxite pisoids. Journal of Sedimentary Research, 52, 849-857. https://doi.org/10.1306/212F8071-2B24-11D7-8648000102C1865D.
[7] Bréhéret J. G., Brumsack H. J., 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sedimentary Geology, 130(3-4), 205-228. https://doi.org/10.1016/S0037-0738(99)00112-8.
[8] Chan M. A., Ormo J., Park A. J., Stich M., Souza‐Egipsy V., Komatsu G., 2007. Models of iron oxide concretion formation: field, numerical, and laboratory comparisons. Geofluids, 7(3), 356-368. https://doi.org/10.1111/j.1468-8123.2007.00187.x.
[9] Claude Lalou., 1957. Studies on Bacterial Precipitation of Carbonates in Sea Water. SEPM Journal of Sedimentary Research, 27 (2), 190-195 . https://doi.org/10.1306/74D706A0-2B21-11D7-8648000102C1865D.
[10] Curtis C. D., Hughes C. R., Whiteman J. A., & Whittle C. K., 1985. Compositional variation within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine, 49(352), 375-386. https://doi.org/10.1180/minmag.1985.049.352.08
[11] Davies R. J., Bubela B., Ferguson J., 1978. The formation of ooids.Sedimentology, 25, 703-730.
[12] Demina L. I., Kopp M. L., Koronovsky N. V., Leonov M. G., Leonov Y. G., Lomise M. G., Panov D. I., Somin M. L., Tuchkova M. I., 2007. The Greater Caucasus in the Alpine epoch. In: Yu. G., and Leonov, (Eds.). GEOS. (Reference in Russian).
[13] Di Bella M., Sabatino G., Quartieri S., Ferretti A., Cavalazzi B., Barbieri R., Foucher F., Messori F., Italiano F., 2019. Modern iron ooids of hydrothermal Origin as a Proxy for ancient deposits. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43181-y.
[14] Diab H., Chouabbi A.,Chi Fru, E., Nacer, J.-E., Krekeler, M., 2020) Mechanism of formation, mineralogy and geochemistry of the ooidal ironstone of Djebel Had, northeast Algeria. Journal of African Earth Sciences, 162, 103736. https://doi.org/10.1016/j.jafrearsci.2019.103736.
[15] Diaz M. R., Eberly G. P., 2019. Decoding the mechanism of formation in marine ooids: A review.Earth-Science Reviews, 190, 536556.
[16] Dreesen R.,1989. Oolitic ironstones as event-stratigraphical marker beds within the Upper Devonian of the Ardenno-Rhenish Massif. Geological Society, London, Special Publications, 46(1), 65-78. https://doi.org/10.1144/GSL.SP.1989.046.01.08.
[17] Duguid S. M.A., Kyser, T. K., James, N. P., Rankey, E. C., 2010. Microbes and ooids. Journal of Sedimentary Research, 80(3), 236-251. https://doi.org/10.2110/jsr.2010.027.
[18] Ferretti A., Cavalazzi B., Barbieri R., Westall F., Foucher F., Todesco R.,2012. From black-and-white to colour in the Silurian. Palaeogeography, Palaeoclimatology, Palaeoecology, 367-368, 178-192. https://doi.org/10.1016/j.palaeo.2012.10.025.
[19] Ferretti A.,2005. Ooidal ironstones and laminated ferruginous deposits from the Silurian of the Carnic Alps, Austria. Bollettino Della Società Paleontologica Italiana, 44 (3), 263-278.
[20] Flugel E.,1982. Microfacies Analysis of Limestomes. Springer-Verlag.
[21] Flugel E.,2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer-Verlag.
[22] Harder H.,1989. Mineral genesis in ironstones: a model based upon laboratory experiments and petrographic observations. Geological Society, London, Special Publications, 46(1), 9-18. https://doi.org/10.1144/GSL.SP.1989.046.01.04.
[23] Horton A., Ivimey-Cook H. C., Harrison R. K., Young B. R., 1980. Phosphatic öoids in the Upper Lias (Lower Jurassic) of central England. Journal of the Geological Society, London Special Publications, 137(6), 731-740. https://doi.org/10.1144/gsjgs.137.6.0731
[24] James H. E., Van Houten F. B., 1979. Miocene goethitic and chamositic oolites, northeastern Colombia. Sedimentology, 26, 125-133. https://doi.org/10.1111/j.1365-3091.1979.tb00342.x.
[25] Jewell P. W., Stallard R. F., 1991. Geochemistry and paleoceanographic setting of central Nevada Bedded Barites. The Journal of Geology, 99(2), 151-170. https://doi.org/10.1086/629482.
[26] Kimberley M. M.,1979. Origin of oOolitic iron formations. Journal of Sedimentary Research, 49, 111-131. https://doi.org/10.1306/212F76D0-2B24-11D7-8648000102C1865D.
[27] Kimberley M. M.,1989. Exhalative origins of iron formations.Ore Geology Reviews, 5, 13-145.
[28] Kimberley M. M.,1994. Debate about ironstone: has solute supply been surficial weathering, hydrothermal convection, or exhalation of deep fluids? Terra Nova, 6(2), 116-132. https://doi.org/10.1111/j.1365-3121.1994.tb00645.x.
[29] Knox R. W.,1970. Chamosite ooliths from the winter gill ironstone (Jurassic) of Yorkshire, England. Journal of Sedimentary Research, 40, 1216-1225. https://doi.org/10.1306/74D7216C-2B21-11D7-8648000102C1865D.
[30] Kuleshov V. N.,1986. Isotopic composition and origin of deep carbonates. In: A. V. Peive, (Ed).; Vol. 405. Nauka (Reference in Russian) . .
[31] Land L. S., Behrens E. W., Frishman S. A., 1979. The ooids of Baffin Bay, Texas. Journal of Sedimentary Research, 49, 1269-1277. https://doi.org/10.1306/212F7905-2B24-11D7-8648000102C1865D.
[32] Li F., Zhang P., Ma X., Yuan G.,2021. The iron oolitic deposits of the lower Devonian Yangmaba Formation in the Longmenshan area, Sichuan Basin. Marine and Petroleum Geology, 130, 105137. https://doi.org/10.1016/j.marpetgeo.2021.105137.
[33] Marshall J. F., Davies P. J., 1975. High-magnesium calcite ooids from the Great Barrier Reef. Journal of Sedimentary Research, 45, 285-291. https://doi.org/10.1306/212F6D3E-2B24-11D7-8648000102C1865D.
[34] Maximov P. N., Rudmin M. A., 2022. Mineralogical and geochemical features of Upper Cretaceous marine ironstones of the Ayatskaya Formation (Turgai Trough). Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, 333 https://doi.org/10.18799/24131830/2022/5/3628 (Reference in Russian).
[35] Middleton G. V., Church M. J., Conigloi M., Hardie L.A., Longstaffe F. J., 2003. Encyclopedia of Sediments and Sedimentory Rocks. Springer Netherlands, 928
[36] Monaghan P., Lytle M. L., 1956. The origin of calcareous ooliths.Journal of Sedimentary Research, 26, 111-118.
[37] Mutrux J., Maher H., Shuster R., Hays T., 2008. Iron ooid beds of the Carolinefjellet Formation, Spitsbergen, Norway. Polar Research, 27(1), 28-43. https://doi.org/10.1111/j.1751-8369.2007.00039.x.
[38] Nesteroff W. D.,1956. Le substratum organique dans les depots calcaires, sa signification. Bulletin de La Société Géologique de France, S6-VI(4-5), 381-390. https://doi.org/10.2113/gssgfbull.S6-VI.4-5.381.
[39] Panov D. I.,1988. Structural-facial zoning of the Greater Caucasus at the Early Alpine stage of its development.Bulletin of the Moscow Society of Nature Researchers. Geological Department, 63, 13-24.(Reference in Russian).
[42] Preat A., El Hassani A., Mamet B., 2008. Iron bacteria in Devonian carbonates (Tafilalt, Anti-Atlas, Morocco). Facies, 54(1), 107-120. https://doi.org/10.1007/s10347-007-0124-2.
[40] Préat A., Mamet B., De Ridder C., Boulvain F., Gillan D., 2000. Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic, northern Normandy, France). Sedimentary Geology, 137(3-4), 107-126. https://doi.org/10.1016/S0037-0738(00)00101-9.
[41] Rankey E. C., Reeder S. L., 2012. Tidal Sands of the Bahamian Archipelago. In: Principles of Tidal Sedimentology, pp. 537-565. Springer, Netherlands. https://doi.org/10.1007/978-94-007-0123-6_20.
[42] Rudmin M., Banerjee S., Maximov P., Novoselov A., Trubin Y., Smirnov P., Abersteiner A., Tang D., Mazurov A.,2022a. Origin of ooids, peloids and micro-oncoids of marine ironstone deposits in Western Siberia (Russia). Journal of Asian Earth Sciences, 237. https://doi.org/10.1016/j.jseaes.2022.105361.
[43] Rudmin M., Banerjee S., Sinkina E., Ruban A., Kalinina N., Smirnov P.,2022b. A study of iron carbonates and clay minerals for understanding the origin of marine ooidal ironstone deposits. Marine and Petroleum Geology, 142, 105777. https://doi.org/10.1016/j.marpetgeo.2022.105777.
[44] Rudmin M., Mazurov A., Banerjee S.,2019. Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, south-east Western Siberia. Marine and Petroleum Geology, 100, 309-325. https://doi.org/10.1016/j.marpetgeo.2018.11.023.
[45] Salama W.,El Aref, M., Gaupp, R., 2012. Mineralogical and geochemical investigations of the Middle Eocene ironstones, El Bahariya Depression, Western Desert, Egypt. Gondwana Research, 22, 717-736. https://doi.org/10.1016/j.gr.2011.11.011.
[46] Semenukha I. N., Chernykh V. I., Sokolov V. V., 2021. State Geological Map of the Russian Federation At a Scale of 1:200,000. Caucasian series. Sheet K-37-VI,(XII) (2nd ed.). Moscow Branch of FGBU “VSEGEI.” (Reference in Russian).
[47] Smith W. O., Nelson D. M., DiTullio G. R., Leventer A. R., 1996. Temporal and spatial patterns in the Ross Sea: Phytoplankton biomass, elemental composition, productivity and growth rates. Journal of Geophysical Research: Oceans, 101(C8), 18455-18465. https://doi.org/10.1029/96JC01304.
[48] Sorby H. C.,1849. On the origin of the Cleveland Hill ironstone. Proceedings of the Yorkshire Geological Society, 3(1), 457-461. https://doi.org/10.1144/pygs.3.457.
[49] Stakes D. S., Orange D., Paduan J. B., Salamy K. A., Maher N., 1999. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology, 159(1-4), 93-109. https://doi.org/10.1016/S0025-3227(98)00200-X.
[50] Sturesson U.,1988. Chemical composition of Lower Ordovician ooids from northern Öland, Sweden, and their sedimentary host matrix. Geologiska Föreningen i Stockholm Förhandlingar, 110(1), 29-38. https://doi.org/10.1080/11035898809453118.
[51] Sturesson U., Heikoop J. M., Risk M. J., 2000. Modern and Palaeozoic iron ooids—a similar volcanic origin. Sedimentary Geology, 136(1-2), 137-146. https://doi.org/10.1016/S0037-0738(00)00091-9.
[52] Sumner D. Y., Grotzinger J. P., 1993. Numerical modeling of ooid size and the problem of Neoproterozoic Giant Ooids. Journal of Sedimentary Research, 63. https://doi.org/10.1306/D4267C5D-2B26-11D7-8648000102C1865D.
[53] Theis R. W., Naydin D. P., 1973. Palaeothermometry and oxygen isotope composition of organogenic carbonates. In: A. P. Vinogradov, (Ed.). Nauka (Reference in Russian) .
[54] Tucker M. E., Wright V. P., 1990. Carbonate Sedimentology. Wiley. Blackwell Science. https://doi.org/10.1002/9781444314175.
[55] Sturesson U.,1992. Volcanic ash: the source material for Ordovician Chamosite ooids in Sweden. Journal of Sedimentary Research, 62. https://doi.org/10.1306/D4267A55-2B26-11D7-8648000102C1865D.
[56] Van Houten, F. B., 1985. Oolitic ironstones and contrasting Ordovician and Jurassic paleogeography.Geology, 13, 722-724.
[57] Van Houten F. B., Purucker M. E., 1984a. Glauconitic peloids and chamositic ooids - favorable factors, constraints, and problems. Earth-Science Reviews, 20(3), 211-243. https://doi.org/10.1016/0012-8252(84)90002-3.
[58] Van Houten F. B., Purucker M. E., 1984b. Glauconitic peloids and chamositic ooids - favorable factors, constraints, and problems. Earth-Science Reviews, 20(3), 211-243. https://doi.org/10.1016/0012-8252(84)90002-3.
[59] Varshanina T. P., Korobkov V. N., Plisenko O. A., Solodukhin A. A., 2011. A structurally similar geodynamic model of Krasnodar region and the Republic of Adygea. In: B. I. Kochurova, (Ed.). Kamerton. (Reference in Russian).
[60] Whiticar M. J.,1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1-3), 291-314. https://doi.org/10.1016/S0009-2541(99)00092-3.
[61] Young T. P.,1989. Phanerozoic ironstones: an introduction and review. Geological Society, London, Special Publications, 46(1), IX-XXV. https://doi.org/10.1144/GSL.SP.1989.046.01.02. |