D.D. Adams, M.T. Hurtgen, B.B. Sageman, 2010. Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2. Nature Geoscience, 3 (3), pp. 201-204.
R. Aguado, M. Reolid, E. Molina, 2016. Response of calcareous nannoplankton to the Late Cretaceous oceanic anoxic event 2 at Oued Bahloul (Central Tunisia). Palaeogeography, Palaeoclimatology, Palaeoecology, 459, pp. 289-305.
K. Al-Bassam, T. Magna, R. Vodrážka, S. Čech, 2019. Mineralogy and geochemistry of marine glauconitic siliciclasts and phosphates in selected Cenomanian–Turonian units, Bohemian Cretaceous Basin, Czech Republic: Implications for provenance and depositional environment. Geochemistry, 79 (2), pp. 347-368.
T.J. Algeo, J. Liu, 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, Article 119549.
B. Andreu, J.P. Colin, J. Singh, 2007. Cretaceous (Albian to Coniacian) ostracodes from the subsurface of the Jaisalmer Basin, Rajasthan, India. Micropaleontology, 53 (5), pp. 345-370.
M.A. Arthur, W.E. Dean, S.O. Schlanger, 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. The carbon cycle and atmospheric CO2: natural variations Archean to present. 32, pp. 504-529.
M.A. Arthur, B.B. Sageman, 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22 (1), pp. 499-551.
M.A. Arthur, W.E. Dean, L.M. Pratt, 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335 (6192), pp. 714-717.
H. Baghli, E. Mattioli, J.E. Spangenberg, W. Ruebsam, L. Schwark, M. Bensalah, A. Sebane, B. Pittet, P. Pellenard, G. Suan, 2022. Stratification and productivity in the Western Tethys (NW Algeria) during early Toarcian. Palaeogeography, Palaeoclimatology, Palaeoecology, 591, Article 110864.
K. Bąk, 2007. Organic-rich and manganese sedimentation during the Cenomanian–Turonian boundary event in the Outer Carpathian basins; a new record from the Skole Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 256 (1–2), pp. 21-46.
S.J. Baker, C.M. Belcher, R.S. Barclay, S.P. Hesselbo, J. Laurin, B.B. Sageman, 2020. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. The Geological Society of America Bulletin, 132 (1–2), pp. 321-333.
U. Bansal, K. Pande, S. Banerjee, R. Nagendra, K.C. Jagadeesan, 2019. The timing of oceanic anoxic events in the Cretaceous succession of Cauvery Basin: Constraints from 40Ar/39Ar ages of glauconite in the K arai Shale Formation. Geological Journal, 54 (1), pp. 308-315.
R.S. Barclay, J.C. McElwain, B.B. Sageman, 2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3 (3), pp. 205-208.
F. Barroso-Barcenilla, A. Pascual, D. Peyrot, J. Rodríguez-Lázaro, 2011. Integrated biostratigraphy and chemostratigraphy of the upper Cenomanian and lower Turonian succession in Puentedey, Iberian Trough, Spain. Proceedings of the Geologists' Association, 122 (1), pp. 67-81.
S. Beil, W. Kuhnt, A. Holbourn, F. Scholz, J. Oxmann, K. Wallmann, J. Lorenzen, M. Aquit, E.H. Chellai, 2020. Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks. Climate of the Past, 16 (2), pp. 757-782.
P. Bengtson, W.A. Cobban, P.A.U.L. Dodsworth, A.S. Gale, 1996. The Turonian stage and substage boundaries. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 66 (69), p. e79.
W.W. Bennett, D.E. Canfield, 2020. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth-Science Reviews, 204, Article 103175.
R.A. Berner, K. Caldeira, 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology, 25 (10), pp. 955-956.
R.J. Bertle, T.J. Suttner, 2005. New biostratigraphic data for the Chikkim Formation (Cretaceous, Tethyan Himalaya, India). Cretaceous Research, 26 (6), pp. 882-894.
B. Bomou, T. Adatte, A.A. Tantawy, H. Mort, D. Fleitmann, Y. Huang, K.B. Föllmi, 2013. The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, pp. 466-481.
F.G. Boudinot, N. Dildar, R.M. Leckie, A. Parker, M.M. Jones, B.B. Sageman, T.J. Bralower, J. Sepúlveda, 2020. Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 546, Article 109673.
S. Boulila, G. Charbonnier, J.E. Spangenberg, S. Gardin, B. Galbrun, J. Briard, L. Le Callonnec, 2020. Unraveling short-and long-term carbon cycle variations during the Oceanic Anoxic Event 2 from the Paris Basin Chalk. Global and Planetary Change, 186, Article 103126.
A.R. Bowman, T.J. Bralower, 2005. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Marine Geology, 217 (3–4), pp. 305-321.
A. Bozcu, F. Baudin, T. Danelian, B. Vrielynck, M. Bozcu, A. Poisson, 2011. New evidence for the record of the Cenomanian–Turonian oceanic anoxic event (OAE2) in the Pamphylian basin (Akdoğan Section, Antalya Nappes, SW Turkey): Comparison with surrounding basinal settings. Cretaceous Research, 32 (6), pp. 823-832.
V. Brčić, B. Glumac, L. Fuček, A. Grizelj, M. Horvat, H. Posilović, I. Mišur, 2017. The Cenomanian–Turonian boundary in the northwestern part of the Adriatic Carbonate Platform (Ćićarija Mtn., Istria, Croatia): characteristics and implications. Facies, 63, pp. 1-20.
J.G. Bréhéret, H.J. Brumsack, 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sedimentary Geology, 130 (3–4), pp. 205-228.
H.J. Brumsack, 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232 (2–4), pp. 344-361.
R.N. Bryant, C. Jones, M.R. Raven, J.D. Owens, D.A. Fike, 2020. Shifting modes of iron sulfidization at the onset of OAE-2 drive regional shifts in pyrite δ34S records. Chemical Geology, 553, Article 119808.
S.E. Calvert, T.F. Pedersen, 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113 (1–2), pp. 67-88.
M. Caron, 1985. Cretaceous planktic foraminifera. H.M. Bolli, et al. (Eds.), Plankton Stratigraphy, Cambridge University Press, Cambridge, pp. 17-86.
M. Caron, S. Dall'Agnolo, H. Accarie, E. Barrera, E.G. Kauffman, F. Amédro, F. Robaszynski, 2006. High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios, 39 (2), pp. 171-200.
G. Charbonnier, T. Adatte, J.E. Spangenberg, K.B. Föllmi, 2018b. The expression of early Aptian to latest Cenomanian oceanic anoxic events in the sedimentary record of the Briançonnais domain. Global and Planetary Change, 170, pp. 76-92.
G. Charbonnier, S. Boulila, J.E. Spangenberg, T. Adatte, K.B. Föllmi, J. Laskar, 2018a. Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 499, pp. 266-277.
H. Chen, G. Bayon, Z. Xu, T. Li, 2023. Hafnium isotope evidence for enhanced weatherability at high southern latitudes during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 601, Article 117910.
R. Coccioni, V. Luciani, 2004. Planktonic foraminifera and environmental changes across the Bonarelli Event (OAE2, latest Cenomanian) in its type area: a high-resolution study from the Tethyan reference Bottaccione section (Gubbio, Central Italy). Journal of Foraminiferal Research, 34 (2), pp. 109-129.
R. Coccioni, V. Luciani, 2005. Planktonic foraminifers across the Bonarelli Event (OAE2, latest Cenomanian): the Italian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224 (1–3), pp. 167-185.
M.J. Corbett, D.K. Watkins, 2013. Calcareous nannofossil paleoecology of the mid-Cretaceous Western Interior Seaway and evidence of oligotrophic surface waters during OAE2. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, pp. 510-523.
M.J. Corbett, D.K. Watkins, J.J. Pospichal, 2014. A quantitative analysis of calcareous nannofossil bioevents of the Late Cretaceous (Late Cenomanian–Coniacian) Western Interior Seaway and their reliability in established zonation schemes. Marine Micropaleontology, 109, pp. 30-45.
V.E. Courtillot, P.R. Renne, 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335 (1), pp. 113-140.
J. Danzelle, L. Riquier, F. Baudin, C. Thomazo, E. Pucéat, 2018. Oscillating redox conditions in the Vocontian Basin (SE France) during oceanic anoxic event 2 (OAE 2). Chemical Geology, 493, pp. 136-152.
G.J. Demaison, G.T. Moore, 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2 (1), pp. 9-31.
A.J. Dickson, H.C. Jenkyns, D. Porcelli, S. van den Boorn, E. Idiz, 2016. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous). Geochimica et Cosmochimica Acta, 178, pp. 291-306.
A.J. Dickson, M. Saker-Clark, H.C. Jenkyns, C. Bottini, E. Erba, F. Russo, O. Gorbanenko, B.D. Naafs, R.D. Pancost, S.A. Robinson, S.H. Van den Boorn, 2017. A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau). Sedimentology, 64 (1), pp. 186-203.
A.D. Du Vivier, A.D. Jacobson, G.O. Lehn, D. Selby, M.T. Hurtgen, B.B. Sageman, 2015. Ca isotope stratigraphy across the Cenomanian–Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth and Planetary Science Letters, 416, pp. 121-131.
A.D. Du Vivier, D. Selby, B.B. Sageman, I. Jarvis, D.R. Gröcke, S. Voigt, 2014. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389, pp. 23-33.
J. Dymond, E. Suess, M. Lyle, 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7 (2), pp. 163-181.
S.M. El Baz, M.M. Khalil, 2019. Foraminiferal biostratigraphy and bioevents of the Cenomanian-Turonian succession in southern Sinai, Egypt and relationship to OAE2. Journal of African Earth Sciences, 150, pp. 310-318.
W.P. Elder, 1989. Molluscan extinction patterns across the Cenomanian-Turonian stage boundary in the Western Interior of the United States. Paleobiology, 15 (3), pp. 299-320.
K. Elderbak, R.M. Leckie, 2016. Paleocirculation and foraminiferal assemblages of the Cenomanian–Turonian Bridge Creek Limestone bedding couplets: Productivity vs. dilution during OAE2. Cretaceous Research, 60, pp. 52-77.
K. Elderbak, R.M. Leckie, N.E. Tibert, 2014. Paleoenvironmental and paleoceanographic changes across the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, pp. 29-48.
J.S. Eldrett, P. Dodsworth, S.C. Bergman, M. Wright, D. Minisini, 2017. Water-mass evolution in the Cretaceous western interior seaway of North America and equatorial Atlantic. Climate of the Past, 13 (7), pp. 855-878.
J.S. Eldrett, C. Ma, S.C. Bergman, B. Lutz, F.J. Gregory, P. Dodsworth, M. Phipps, P. Hardas, D. Minisini, A. Ozkan, J. Ramezani, 2015. An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, 56, pp. 316-344.
J.S. Eldrett, D. Minisini, S.C. Bergman, 2014. Decoupling of the carbon cycle during Ocean Anoxic Event 2. Geology, 42 (7), pp. 567-570.
M. Elrick, R. Molina-Garza, R. Duncan, L. Snow, 2009. C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water platform carbonates of southern Mexico. Earth and Planetary Science Letters, 277 (3–4), pp. 295-306.
E. Erba, 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52 (1–4), pp. 85-106.
E. Erba, C. Bottini, G. Faucher, G. Gambacorta, S. Visentin, 2019. The response of calcareous nannoplankton to Oceanic Anoxic Events: The Italian pelagic record, vol. 58, Bollettino della Societa Paleontologica, Italiana, pp. 51-71.
E. Erba, R.A. Duncan, C. Bottini, D. Tiraboschi, H. Weissert, H.C. Jenkyns, A. Malinverno, 2015. Environmental consequences of Ontong Java Plateau and Kerguelen plateau volcanism. The origin, evolution, and environmental impact of oceanic large igneous provinces. Geological Society of America Special Paper, 511, pp. 271-303.
J. Erbacher, O. Friedrich, P.A. Wilson, H. Birch, J. Mutterlose, 2005. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochemistry, Geophysics, Geosystems, 6 (6) (2005).
J. Erbacher, B.T. Huber, R.D. Norris, M. Markey, 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature, 409 (6818), pp. 325-327.
J.V.J.T. Erbacher, J. Thurow, 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology, 30 (1–3), pp. 139-158.
R.E. Ernst, N. Youbi, 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, pp. 30-52.
F. Falzoni, M.R. Petrizzo, 2020. Patterns of planktonic foraminiferal extinctions and eclipses during Oceanic Anoxic Event 2 at Eastbourne (SE England) and other mid-low latitude locations. Cretaceous Research, 116, Article 104593.
F. Falzoni, M.R. Petrizzo, 2022. Evidence for changes in sea-surface circulation patterns and∼ 20 equatorward expansion of the Boreal bioprovince during a cold snap of Oceanic Anoxic Event 2 (Late Cretaceous). Global and Planetary Change, 208, Article 103678.
F. Falzoni, M.R. Petrizzo, M. Caron, R.M. Leckie, K. Elderbak, 2018. Age and synchronicity of planktonic foraminiferal bioevents across the Cenomanian–Turonian boundary interval (Late Cretaceous). Newsletters on Stratigraphy, 51 (3), pp. 343-380.
F. Falzoni, M.R. Petrizzo, H.C. Jenkyns, A.S. Gale, H. Tsikos, 2016. Planktonic foraminiferal biostratigraphy and assemblage composition across the Cenomanian–Turonian boundary interval at Clot Chevalier (Vocontian Basin, SE France). Cretaceous Research, 59, pp. 69-97.
F. Falzoni, M.R. Petrizzo, K.G. MacLeod, B.T. Huber, 2013. Santonian–Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: Species depth ecology and paleoceanographic inferences. Marine Micropaleontology, 103, pp. 15-29.
G. Faucher, E. Erba, C. Bottini, G. Gambacorta, 2017. Calcareous nannoplankton response to the latest Cenomanian Oceanic Anoxic Event 2 perturbation. Rivista Italiana di Paleontologia e Stratigrafia, 123 (1), pp. 159-176.
A.G.S. Fernando, R. Takashima, H. Nishi, F. Giraud, H. Okada, 2010. Calcareous nannofossil biostratigraphy of the Thomel Level (OAE2) in the Lambruisse section, Vocontian Basin, southeast France. Geobios, 43 (1), pp. 45-57.
S. Floegel, K. Wallmann, C.J. Poulsen, J. Zhou, A. Oschlies, S. Voigt, W. Kuhnt, 2011. Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth and Planetary Science Letters, 305 (3–4), pp. 371-384.
K.B. Föllmi, 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40 (1–2), pp. 55-124.
C. Fonseca, J.G. Mendonça Filho, C. Lézin, De Oliveira, L.V. Duarte, 2020. Organic matter deposition and paleoenvironmental implications across the Cenomanian-Turonian boundary of the Subalpine Basin (SE France): Local and global controls. International Journal of Coal Geology, 218, p. 103364.
A. Forster, M.M. Kuypers, S.C. Turgeon, H.J. Brumsack, M.R. Petrizzo, J.S.S. Damsté, 2008. The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A. Palaeogeography, Palaeoclimatology, Palaeoecology, 267 (3–4), pp. 256-283.
O. Friedrich, 2010. Benthic foraminifera and their role to decipher paleoenvironment during mid-Cretaceous Oceanic Anoxic Events–the “anoxic benthic foraminifera” paradox. Revue de Micropaléontologie, 53 (3), pp. 175-192.
O. Friedrich, J. Erbacher, J. Mutterlose, 2006. Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de Micropaléontologie, 49 (3), pp. 121-139.
O. Friedrich, S. Voigt, T. Kuhnt, M.C. Koch, 2011. Repeated bottom-water oxygenation during OAE 2: timing and duration of short-lived benthic foraminiferal repopulation events (Wunstorf, northern Germany). Journal of Micropalaeontolgy, 30 (2), pp. 119-128.
A.S. Gale, H.C. Jenkyns, H. Tsikos, Y. van Breugel, J.S. Sinninghe Damsté, C. Bottini, E. Erba, F. Russo, F. Falzoni, M.R. Petrizzo, A.J. Dickson, 2019. High-resolution bio-and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (late Cenomanian–early Turonian) at Clot Chevalier, near Barrême, SE France (Vocontian Basin). Newsletters on Stratigraphy, 52 (1), pp. 97-129.
A.S. Gale, W.J. Kennedy, S. Voigt, I. Walaszczyk, 2005. Stratigraphy of the Upper Cenomanian–Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research, 26 (3), pp. 460-487.
G. Gambacorta, H.C. Jenkyns, F. Russo, H. Tsikos, P.A. Wilson, G. Faucher, E. Erba, 2015. Carbon-and oxygen-isotope records of mid-Cretaceous Tethyan pelagic sequences from the Umbria–Marche and Belluno Basins (Italy). Newsletters on Stratigraphy, 48 (3), pp. 299-323.
S.K. Gangl, C.M. Moy, C.H. Stirling, H.C. Jenkyns, J.S. Crampton, M.O. Clarkson, C. Ohneiser, D. Porcelli, 2019. High-resolution records of Oceanic Anoxic Event 2: insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean. Earth and Planetary Science Letters, 518, pp. 172-182.
H. Gebhardt, O. Friedrich, B. Schenk, L. Fox, M. Hart, M. Wagreich, 2010. Paleoceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian Oceanic Anoxic Event (OAE-2). Marine Micropaleontology, 77 (1–2), pp. 25-45.
B. Gertsch, G. Keller, T. Adatte, Z. Berner, A.S. Kassab, A.A.A. Tantawy, A.M. El-Sabbagh, D. Stueben, 2010. Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt. International Journal of Earth Sciences, 99, pp. 165-182.
M.H. Gharaie, B. Kalanat, 2018. Enhanced chemical weathering and organic carbon burial as environmental recovery factors of the OAE2; a case study in the Koppeh-Dagh Basin (NE Iran). Geopersia, 8 (2), pp. 233-244.
T. Goldberg, S.W. Poulton, T. Wagner, S.F. Kolonic, M. Rehkämper, 2016. Molybdenum drawdown during Cretaceous oceanic anoxic event 2. Earth and Planetary Science Letters, 440, pp. 81-91.
F.M. Gradstein, J.G. Ogg, 2020. The chronostratigraphic scale. F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg (Eds.), Geologic Time Scale 2020, Elsevier, Amsterdam, Netherlands, pp. 21-32.
S.E. Grasby, X. Liu, R. Yin, R.E. Ernst, Z. Chen, 2020. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology, 48 (8), pp. 830-833.
S.E. Grasby, W. Shen, R. Yin, J.D. Gleason, J.D. Blum, R.F. Lepak, J.P. Hurley, B. Beauchamp, 2017. Isotopic signatures of mercury contamination in latest Permian oceans. Geology, 45 (1), pp. 55-58.
T. Green, P.R. Renne, C.B. Keller, 2022. Continental flood basalts drive Phanerozoic extinctions. Proceedings of the National Academy of Sciences, 119 (38), Article e2120441119.
B.U. Haq, 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, pp. 44-58.
P. Hardas, J. Mutterlose, 2006. Calcareous nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval of ODP Leg 207 at the Demerara Rise. Revue de Micropaléontologie, 49 (3), pp. 165-179.
P. Hardas, J. Mutterlose, 2007. Calcareous nannofossil assemblages of Oceanic Anoxic Event 2 in the equatorial Atlantic: Evidence of an eutrophication event. Marine Micropaleontology, 66 (1), pp. 52-69.
J. Hardenbol, J. Thierry, M.B. Farley, T. Jacquin, P.C. De Graciansky, P.R. Vail, 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. P.-C. de Graciansky, J. Hardenbol, T. Jacquin, P.R. Vail (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, Society for Sedimentary Geology, Tulsa, Oklahoma, 60, pp. 3-13.
T. Hasegawa, J.S. Crampton, P. Schiøler, B. Field, K. Fukushi, Y. Kakizaki, 2013. Carbon isotope stratigraphy and depositional oxia through Cenomanian/Turonian boundary sequences (Upper Cretaceous) in New Zealand. Cretaceous Research, 40, pp. 61-80.
U. Heimhofer, N. Wucherpfennig, T. Adatte, S. Schouten, E. Schneebeli-Hermann, S. Gardin, G. Keller, S. Kentsch, A. Kujau, 2018. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nature Communications, 9 (1), p. 3832.
S. Henkel, J.M. Mogollón, K. Nöthen, C. Franke, K. Bogus, E. Robin, A. Bahr, M. Blumenberg, T. Pape, R. Seifert, C. März, 2012. Diagenetic barium cycling in Black Sea sediments–A case study for anoxic marine environments. Geochimica et Cosmochimica Acta, 88, pp. 88-105.
A. Hetzel, M.E. Böttcher, U.G. Wortmann, H.J. Brumsack, 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (3–4), pp. 302-328.
A. Hetzel, C. März, C. Vogt, H.J. Brumsack, 2011. Geochemical environment of Cenomanian-Turonian black shale deposition at Wunstorf (northern Germany). Cretaceous Research, 32 (4), pp. 480-494.
C. Holmden, A.D. Jacobson, B.B. Sageman, M.T. Hurtgen, 2016. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway. Geochimica et Cosmochimica Acta, 186, pp. 277-295.
D.J. Horne, S.N. Brandão, I.J. Slipper, 2011. The platycopid signal deciphered: responses of ostracod taxa to environmental change during the Cenomanian–Turonian boundary event (Late Cretaceous) in SE England. Palaeogeography, Palaeoclimatology, Palaeoecology, 308 (3–4), pp. 304-312.
V. Ittekkot, 1988. Global trends in the nature of organic matter in river suspensions. Nature, 332 (6163), pp. 436-438.
I. Jarvis, G.A. Carson, M.K.E. Cooper, M.B. Hart, P.N. Leary, B.A. Tocher, D. Horne, A. Rosenfeld, 1988. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Research, 9 (1), pp. 3-103.
I. Jarvis, J.S. Lignum, D.R. Gröcke, H.C. Jenkyns, M.A. Pearce, 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26 (3) (2011).
R.P.S. Jefferies, 1965. The mode of life of two Jurassic species of 'Posidonia' (Bivalvia). Palaeontology, 8, pp. 156-185.
H.C. Jenkyns, 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137 (2), pp. 171-188, http://doi.org/10.1144/gsjgs.137.2.017.
H.C. Jenkyns, 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288 (2), pp. 101-151.
H.C. Jenkyns, 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11 (3) (2010).
H.C. Jenkyns, A.J. Dickson, M. Ruhl, S.H. Van den Boorn, 2017. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology, 64 (1), pp. 16-43.
H.C. Jenkyns, A. Matthews, H. Tsikos, Y. Erel, 2007. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22 (3) (2007).
Q. Jiang, F. Jourdan, H.K. Olierook, R.E. Merle, 2023. An appraisal of the ages of Phanerozoic large igneous provinces. Earth-Science Reviews, Article 104314.
C.E. Jones, H.C. Jenkyns, 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301 (2), pp. 112-149.
M.M. Jones, B.B. Sageman, D. Selby, B.R. Jicha, B.S. Singer, A.L. Titus, 2021. Regional chronostratigraphic synthesis of the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology. Bulletin, 133 (5–6), pp. 1090-1104.
Y.J. Joo, B.B. Sageman, M.T. Hurtgen, 2020. Data-model comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2. Earth-Science Reviews, 203, Article 103123.
K. Kaiho, M. Katabuchi, M. Oba, M. Lamolda, 2014. Repeated anoxia–extinction episodes progressing from slope to shelf during the latest Cenomanian. Gondwana Research, 25 (4), pp. 1357-1368.
B. Kalanat, M.H. Mahmudy-Gharaie, M. Vahidinia, H. Vaziri-Moghaddam, A. Kano, F. Kumon, 2018. Paleoenvironmental perturbation across the Cenomanian/Turonian boundary of the Kopet-Dagh Basin (NE Iran), inferred from geochemical anomalies and benthic foraminiferal assemblages. Cretaceous Research, 86, pp. 261-275.
B. Kalanat, M. Vahidinia, H. Vaziri-Moghaddam, M.H. Mahmudy-Gharaie, F. Kumon, 2017. Benthic foraminiferal response to environmental changes across Cenomanian/Turonian boundary (OAE2) in the northeastern Tethys, Kopet-Dagh basin. Journal of African Earth Sciences, 134, pp. 33-47.
S. Kanungo, P. Bown, A. Gale, 2021. Cretaceous (Albian-Turonian) calcareous nannofossil biostratigraphy of the onshore Cauvery Basin, southeastern India. Cretaceous Research, 118, Article 104644.
A.A. Kassem, L.M. Sharaf, A.R. Baghdady, A.A. El-Naby, 2020. Cenomanian/Turonian oceanic anoxic event 2 in October oil field, central Gulf of Suez, Egypt. Journal of African Earth Sciences, 165, Article 103817.
R.G. Keil, 2011. Terrestrial influences on carbon burial at sea. Proceedings of the National Academy of Sciences, 108 (24), pp. 9729-9730.
G. Keller, A. Pardo, 2004a. Age and paleoenvironment of the Cenomanian–Turonian global stratotype section and point at Pueblo, Colorado. Marine Micropaleontology, 51 (1–2), pp. 95-128.
G. Keller, A. Pardo, 2004b. Disaster opportunists Guembelitrinidae: index for environmental catastrophes. Marine Micropaleontology, 53 (1–2), pp. 83-116.
G. Keller, T. Adatte, Z. Berner, E.H. Chellai, D. Stueben, 2008. Oceanic events and biotic effects of the Cenomanian-Turonian anoxic event, Tarfaya Basin, Morocco. Cretaceous Research, 29 (5–6), pp. 976-994.
G. Keller, Q. Han, T. Adatte, S.J. Burns, 2001. Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretaceous Research, 22 (4), pp. 391-422.
G. Keller, M.L. Nagori, M. Chaudhary, A.N. Reddy, B.C. Jaiprakash, J.E. Spangenberg, P. Mateo, T. Adatte, 2021. Cenomanian-Turonian sea-level transgression and OAE2 deposition in the Western Narmada Basin, India. Gondwana Research, 94, pp. 73-86.
W.J. Kennedy, I. Walaszczyk, W.A. Cobban, 2000. Pueblo, Colorado, USA, candidate Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous, and for the base of the Middle Turonian Substage, with a revision of the Inoceramidae (Bivalvia). Acta Geologica Polonica, 50 (3), pp. 295-334.
W.J. Kennedy, I. Walaszczyk, W.A. Cobban, 2005. The global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, USA. Episodes Journal of International Geoscience, 28 (2), pp. 93-104.
G.D. Kitch, A.D. Jacobson, B.B. Sageman, R. Coccioni, T. Chung-Swanson, M.E. Ankney, M.T. Hurtgen, 2022. Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2. Communications Earth & Environment, 3 (1), p. 315.
S. Kolonic, T. Wagner, A. Forster, J.S. Sinninghe Damsté, B. Walsworth-Bell, E. Erba, S. Turgeon, H.J. Brumsack, E.H. Chellai, H. Tsikos, W. Kuhnt, 2005. Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial. Paleoceanography, 20 (1) (2005).
M. Košťák, S. Čech, D. Uličný, J. Sklenář, B. Ekrt, M. Mazuch, 2018. Ammonites, inoceramids and stable carbon isotopes of the Cenomanian–Turonian OAE2 interval in central Europe: Pecínov quarry, Bohemian Cretaceous Basin (Czech Republic). Cretaceous Research, 87, pp. 150-173.
P. Kraal, C.P. Slomp, A. Forster, M.M. Kuypers, 2010. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295 (1–2), pp. 42-54.
W. Kuhnt, A.E. Holbourn, S. Beil, M. Aquit, T. Krawczyk, S. Flögel, E.H. Chellai, H. Jabour, 2017. Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanography, 32 (8), pp. 923-946.
L.R. Kump, M.A. Arthur, 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology, 161 (1–3), pp. 181-198.
J. Kuroda, N. Ohkouchi, 2006. Implication of spatiotemporal distribution of black shales deposited during the Cretaceous Oceanic Anoxic Event-2. Paleontological Research, 10 (4), pp. 345-358.
J. Kuroda, N.O. Ogawa, M. Tanimizu, M.F. Coffin, H. Tokuyama, H. Kitazato, N. Ohkouchi, 2007. Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256 (1–2), pp. 211-223.
M.M. Kuypers, L.J. Lourens, W.I.C. Rijpstra, R.D. Pancost, I.A. Nijenhuis, J.S.S. Damsté, 2004. Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2. Earth and Planetary Science Letters, 228 (3–4), pp. 465-482.
M.M. Kuypers, R.D. Pancost, I.A. Nijenhuis, J.S. Sinninghe Damsté, 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17 (4) (2002)3-1.
M.A. Lamolda, M.C. Melinte-Dobrinescu, K. Kaiho, 2016. Calcareous nannoplankton assemblage changes linked to paleoenvironmental deterioration and recovery across the Cretaceous–Paleogene boundary in the Betic Cordillera (Agost, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 441, pp. 438-452.
D.E. LaRowe, S. Arndt, J.A. Bradley, E.R. Estes, A. Hoarfrost, S.Q. Lang, K.G. Lloyd, N. Mahmoudi, W.D. Orsi, S.S. Walter, A.D. Steen, 2020. The fate of organic carbon in marine sediments-New insights from recent data and analysis. Earth-Science Reviews, 204, Article 103146.
R.M. Leckie, 1985. Foraminifera of the Cenomanian–Turonian boundary interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado. L.M. Pratt, E.G. Kauffman, F.B. Zelt (Eds.), Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes, Field Trip Guidebook, Society of Economic Paleontologists and Mineralogists, pp. 139-149.
R.M. Leckie, T.J. Bralower, R. Cashman, 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17 (3) (2002)13-1.
R.M. Leckie, R.F. Yuretich, O.L. West, D. Finkelstein, M. Schmidt, 1998. Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous). , http://doi.org/10.2110/csp.98.06.0101.
G. Li, H. Elderfield, 2013. Evolution of carbon cycle over the past 100 million years. Geochimica et Cosmochimica Acta, 103, pp. 11-25.
Y.X. Li, B. Gill, I.P. Montañez, L. Ma, M. LeRoy, K.P. Kodama, 2020. Orbitally driven redox fluctuations during Cretaceous Oceanic Anoxic Event 2 (OAE2) revealed by a new magnetic proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, Article 109465.
Y.X. Li, X. Liu, D. Selby, Z. Liu, I.P. Montañez, X. Li, 2022. Enhanced ocean connectivity and volcanism instigated global onset of Cretaceous Oceanic Anoxic Event 2 (OAE2)∼ 94.5 million years ago. Earth and Planetary Science Letters, 578, Article 117331.
Y.X. Li, I.P. Montanez, Z. Liu, L. Ma, 2017. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2). Earth and Planetary Science Letters, 462, pp. 35-46.
B.T. Liguori, M.G. Almedia, C.E. Renznde, 2016. Barium and its importance as an indicator of (paleo) productivity. Anais da Academia Brasileira de Ciências, 88, pp. 2093-2103.
C. Linnert, J. Mutterlose, J. Erbacher, 2010. Calcareous nannofossils of the Cenomanian/Turonian boundary interval from the Boreal Realm (Wunstorf, northwest Germany). Marine Micropaleontology, 74 (1–2), pp. 38-58.
C. Linnert, J. Mutterlose, J.O. Herrle, 2011a. Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): implications for the palaeoceanography of the proto North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 299 (3–4), pp. 507-528.
C. Linnert, J. Mutterlose, R. Mortimore, 2011b. Calcareous nannofossils from Eastbourne (southeastern England) and the paleoceanography of the Cenomanian–Turonian boundary interval. Palaios, 26 (5), pp. 298-313.
V. Londoño, L.S. Collins, 2022. Controls on sedimentary accumulation of organic matter during Cretaceous Oceanic Anoxic Event 2, IODP site U1407, Southeast Newfoundland Ridge. Marine Geology, 443, Article 106699.
C.M. Lowery, M.J. Corbett, R.M. Leckie, D. Watkins, A.M. Romero, A. Pramudito, 2014. Foraminiferal and nannofossil paleoecology and paleoceanography of the Cenomanian–Turonian Eagle Ford Shale of southern Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, pp. 49-65.
A. Mahanipour, J. Mutterlose, M. Eftekhari, 2019. Calcareous nannofossils of the Barremian–Aptian interval from the southeastern Tethys (Zagros Basin, West Iran) and their paleoceanographic implications: A record of Oceanic Anoxic Event 1a. Marine Micropaleontology, 149, pp. 64-74.
E.A. Mehmandsoti, A. Asadi, J. Daneshian, A.D. Woods, S.J. Loyd, 2021. Evidence of Mid-Cretaceous carbon cycle perturbations and OAE2 recorded in Cenomanian to middle Campanian carbonates of the Zagros fold–thrust belt basin, Iran. Journal of Asian Earth Sciences, 218, p. 104863.
I. Melendez, K. Grice, K. Trinajstic, M. Ladjavardi, P. Greenwood, K. Thompson, 2013. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective. Geology, 41 (2), pp. 123-126.
M.C. Melinte-Dobrinescu, A.V. Bojar, 2008. Biostratigraphic and isotopic record of the Cenomanian–Turonian deposits in the Ohaba-Ponor section (SW Haţeg, Romania). Cretaceous Research, 29 (5–6), pp. 1024-1034.
A.P. Menegatti, H. Weissert, R.S. Brown, R.V. Tyson, P. Farrimond, A. Strasser, M. Caron, 1998. High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography, 13 (5), pp. 530-545.
M. Meybeck, 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution, 70, pp. 443-463.
S.R. Meyers, S.E. Siewert, B.S. Singer, B.B. Sageman, D.J. Condon, J.D. Obradovich, B.R. Jicha, D.A. Sawyer, 2012. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 40 (1), pp. 7-10.
F.M. Monteiro, R.D. Pancost, A. Ridgwell, Y. Donnadieu, 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography, 27 (4) (2012).
J.L. Morford, S. Emerson, 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63 (11–12), pp. 1735-1750.
H. Mort, O. Jacquat, T. Adatte, P. Steinmann, K. Föllmi, V. Matera, Z. Berner, D. Stüben, 2007. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?. Cretaceous Research, 28 (4), pp. 597-612.
H.P. Mort, T. Adatte, G. Keller, D. Bartels, K.B. Föllmi, P. Steinmann, Z. Berner, E.H. Chellai, 2008. Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous Research, 29 (5–6), pp. 1008-1023.
B. Musavu-Moussavou, T. Danelian, F. Baudin, R. Coccioni, F. Fröhlich, 2007. The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy). Revue de Micropaléontologie, 50 (3), pp. 253-287.
R. Nagendra, A.N. Reddy, 2017. Major geologic events of the Cauvery Basin, India and their correlation with global signatures–A review. Journal of Palaeogeography, 6 (1), pp. 69-83.
M. Najarro, I. Rosales, J.A. Moreno-Bedmar, G.A. de Gea, E. Barrón, M. Company, G. Delanoy, 2011. High-resolution chemo-and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N Spain): Palaeoceanographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 299 (1–2), pp. 137-158.
T. Nemoto, T. Hasegawa, 2011. Submillennial resolution carbon isotope stratigraphy across the Oceanic Anoxic Event 2 horizon in the Tappu section, Hokkaido, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 309 (3–4), pp. 271-280.
F. Núñez-Useche, C. Canet, R. Barragán, P. Alfonso, 2016. Bioevents and redox conditions around the Cenomanian–Turonian anoxic event in Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, pp. 205-226.
M. Oba, K. Kaiho, T. Okabe, M.A. Lamolda, J.D. Wright, 2011. Short-term euxinia coinciding with rotaliporid extinctions during the Cenomanian-Turonian transition in the middle-neritic eastern North Atlantic inferred from organic compounds. Geology, 39 (6), pp. 519-522.
C.L. O'Brien, S.A. Robinson, R.D. Pancost, J.S.S. Damste, S. Schouten, D.J. Lunt, H. Alsenz, A. Bornemann, C. Bottini, S.C. Brassell, A. Farnsworth, 2017. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172, pp. 224-247.
L.K. O'Connor, H.C. Jenkyns, S.A. Robinson, S.R. Remmelzwaal, S.J. Batenburg, I.J. Parkinson, A.S. Gale, 2020. A re-evaluation of the Plenus Cold Event, and the links between CO2, temperature, and seawater chemistry during OAE 2. Paleoceanography and Paleoclimatology, 35 (4), Article e2019PA003631.
C.J. Orth, M. Attrep Jr, L.R. Quintana, W.P. Elder, E.G. Kauffman, R. Diner, T. Villamil, 1993. Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source (s). Earth and Planetary Science Letters, 117 (1–2), pp. 189-204.
J.D. Owens, T.W. Lyons, C.M. Lowery, 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth and Planetary Science Letters, 499, pp. 83-94.
J.D. Owens, T.W. Lyons, D.S. Hardisty, C.M. Lowery, Z. Lu, B. Lee, H.C. Jenkyns, 2017. Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology, 64 (1), pp. 168-185.
R.D. Pancost, N. Crawford, S. Magness, A. Turner, H.C. Jenkyns, J.R. Maxwell, 2004. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. Journal of the Geological Society, 161 (3), pp. 353-364.
C.R.C. Paul, M.A. Lamolda, S.F. Mitchell, M.R. Vaziri, A. Gorostidi, J.D. Marshall, 1999. The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology, 150 (1–2), pp. 83-121.
P. Pavlishina, M. Wagreich, 2012. Biostratigraphy and paleoenvironments in a northwestern Tethyan Cenomanian-Turonian boundary section (Austria) based on palynology and calcareous nannofossils. Cretaceous Research, 38, pp. 103-112.
A. Paytan, E.M. Griffith, 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54 (5–7), pp. 687-705.
M.A. Pearce, I. Jarvis, B.A. Tocher, 2009. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeography, Palaeoclimatology, Palaeoecology, 280 (1–2), pp. 207-234.
T.F. Pedersen, S.E. Calvert, 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?. American Association of Petroleum Geologists Bulletin, 74 (4), pp. 454-466.
L.M. Percival, A.S. Cohen, M.K. Davies, A.J. Dickson, S.P. Hesselbo, H.C. Jenkyns, M.J. Leng, T.A. Mather, M.S. Storm, W. Xu, 2016. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology, 44 (9), pp. 759-762.
L.M.E. Percival, N.A.G.M. van Helmond, D. Selby, S. Goderis, P. Claeys, 2020. Complex interactions between large igneous province emplacement and global-temperature changes during the Cenomanian-Turonian oceanic anoxic event (OAE 2). Paleoceanography and Paleoclimatology, 35 (10), Article e2020PA004016.
M.R. Petrizzo, G. Amaglio, D.K. Watkins, K.G. MacLeod, B.T. Huber, T. Hasegawa, E. Wolfgring, 2022. Biotic and paleoceanographic changes across the Late Cretaceous Oceanic Anoxic Event 2 in the southern high latitudes (IODP sites U1513 and U1516, SE Indian Ocean). Paleoceanography and Paleoclimatology, 37 (9), Article e2022PA004474.
M.R. Petrizzo, D.K. Watkins, K.G. MacLeod, T. Hasegawa, B.T. Huber, S.J. Batenburg, T. Kato, 2021. Exploring the paleoceanographic changes registered by planktonic foraminifera across the Cenomanian-Turonian boundary interval and Oceanic Anoxic Event 2 at southern high latitudes in the Mentelle Basin (SE Indian Ocean). Global and Planetary Change, 206, Article 103595.
D.Z. Piper, R.B. Perkins, 2004. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology, 206 (3–4), pp. 177-197.
T. Playter, K. Konhauser, G. Owttrim, C. Hodgson, T. Warchola, A.M. Mloszewska, B. Sutherland, A. Bekker, J.P. Zonneveld, S.G. Pemberton, M. Gingras, 2017. Microbe-clay interactions as a mechanism for the preservation of organic matter and trace metal biosignatures in black shales. Chemical Geology, 459, pp. 75-90.
Silva I. Premoli, D. Verga, 2004. Practical manual of Cretaceous planktonic foraminifera. D. Verga, R. Rettori (Eds.), International School on Planktonic Foraminifera, vol. 283, University of Perugia and Milan (2004).
A. Prokoph, L.O. Babalola, H. El Bilali, S. Olagoke, V. Rachold, 2013. Cenomanian–Turonian carbon isotope stratigraphy of the Western Canadian Sedimentary Basin. Cretaceous Research, 44, pp. 39-53.
D.M. Raup, J.J. Sepkoski Jr Jr., 1982. Mass extinction and in the marine fossil record. Science, 218, pp. 1501-1503.
M. Reolid, C.A. Sánchez-Quiñónez, L. Alegret, E. Molina, 2015. Palaeoenvironmental turnover across the Cenomanian-Turonian transition in Oued Bahloul, Tunisia: foraminifera and geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, pp. 491-510.
D. Rickard, 2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522, pp. 62-75.
S.M. Rimmer, 2004. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206 (3–4), pp. 373-391.
F.J. Rodríguez-Tovar, A. Uchman, M. Reolid, C.A. Sánchez-Quiñónez, 2020. Ichnological analysis of the Cenomanian–Turonian boundary interval in a collapsing slope setting: a case from the Rio Fardes section, southern Spain. Cretaceous Research, 106, Article 104262.
W. Ruebsam, A.J. Dickson, E.M. Hoyer, L. Schwark, 2017. Multiproxy reconstruction of oceanographic conditions in the southern epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers. Gondwana Research, 44, pp. 205-218.
B.,I. Ruvalcaba, R.P.M. Topper, N.A.G.M. Van Helmond, H. Brinkhuis, C.P. Slomp, 2014. Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input. Biogeosciences, 11 (4), pp. 977-993.
B.B. Sageman, S.R. Meyers, M.A. Arthur, 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34 (2), pp. 125-128.
S. Salmi-Laouar, B. Ferré, K. Chaabane, R. Laouar, A.J. Boyce, A.E. Fallick, 2018. The Oceanic Anoxic Event 2 at Es Souabaa (Tebessa, NE Algeria): bio-events and stable isotope study. Arabian Journal of Geosciences, 11, pp. 1-18.
J.D. Scaife, M. Ruhl, A.J. Dickson, T.A. Mather, H.C. Jenkyns, L.M.E. Percival, S.P. Hesselbo, J. Cartwright, J.S. Eldrett, S.C. Bergman, D. Minisini, 2017. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? Evidence from the Mid-Cenomanian event and Oceanic Anoxic Event 2 (Late Cretaceous). Geochemistry, Geophysics, Geosystems, 18 (12), pp. 4253-4275.
S.J. Schenau, G.J. De Lange, 2001. Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Marine Chemistry, 75 (3), pp. 201-217.
S.J. Schenau, G.J. Reichart, G.J. De Lange, 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta, 69 (4), pp. 919-931.
S.O. Schlanger, M.A. Arthur, H.C. Jenkyns, P.A. Scholle, 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geological Society, London, Special Publications, 26 (1), pp. 371-399.
S.O. Schlanger, H. Jenkyns, 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55 (3–4) (1976).
B. Schmitz, S.D. Charisi, E.I. Thompson, R.P. Speijer, 1997. Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova, 9 (2), pp. 95-99.
S.D. Schoepfer, J. Shen, H. Wei, R.V. Tyson, E. Ingall, T.J. Algeo, 2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews, 149, pp. 23-52.
P.A. Scholle, M.A. Arthur, 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin, 64 (1), pp. 67-87.
C.J. Schröder-Adams, J.O. Herrle, D. Selby, A. Quesnel, G. Froude, 2019. Influence of the high arctic igneous province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, high Canadian Artic. Earth and Planetary Science Letters, 511, pp. 76-88.
G. Scopelliti, A. Bellanca, R. Coccioni, V. Luciani, R. Neri, F. Baudin, M. Chiari, M. Marcucci, 2004. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’(OAE2, latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 208 (3–4), pp. 293-317.
G. Scopelliti, A. Bellanca, E. Erba, H.C. Jenkyns, R. Neri, P. Tamagnini, V. Luciani, D. Masetti, 2008. Cenomanian–Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 265 (1–2), pp. 59-77.
G. Scopelliti, A. Bellanca, R. Neri, F. Baudin, R. Coccioni, 2006. Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria–Marche Apennines) and from an equivalent section in NW Sicily: Consistent and contrasting responses to the OAE2. Chemical Geology, 228 (4), pp. 266-285.
C. Scotese, 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoDataPlotter program. Geological Society of America Abstracts with Programs, Geological Society of America (2016).
D.J.H. Simons, F. Kenig, 2001. Molecular fossil constraints on the water column structure of the Cenomanian–Turonian Western Interior Seaway, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169 (1–2), pp. 129-152.
D.J.H. Simons, F. Kenig, C.J. Schröder-Adams, 2003. An organic geochemical study of Cenomanian-Turonian sediments from the Western Interior Seaway, Canada. Organic Geochemistry, 34 (8), pp. 1177-1198.
J.S. Sinninghe Damsté, A.C.T. Van Duin, D. Hollander, M.E.L. Kohnen, De Leeuw, 1995. Early diagenesis of bacteriohopanepolyol derivatives: formation of fossil homohopanoids. Geochimica et Cosmochimica Acta, 59, pp. 5141-5157.
L.J. Snow, R.A. Duncan, T.J. Bralower, 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20 (3) (2005).
M. Soua, 2011. Productivity and bottom water redox conditions at the Cenomanian-Turonian Oceanic Anoxic Event in the southern Tethyan margin, Tunisia. Revue méditerranéenne de l'environnement, 4, pp. 653-664.
D.L. Sullivan, A.D. Brandon, J. Eldrett, S.C. Bergman, S. Wright, D. Minisini, 2020. High resolution osmium data record three distinct pulses of magmatic activity during Cretaceous Oceanic Anoxic Event 2 (OAE-2). Geochimica et Cosmochimica Acta, 285, pp. 257-273.
X. Sun, T. Zhang, Y. Sun, K.L. Milliken, D. Sun, 2016. Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, south Texas. Organic Geochemistry, 98, pp. 66-81.
H. Svensen, S. Planke, A.G. Polozov, N. Schmidbauer, F. Corfu, Y.Y. Podladchikov, B. Jamtveit, 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters, 277 (3–4), pp. 490-500.
T.C. Sweere, A.J. Dickson, H.C. Jenkyns, D. Porcelli, M. Elrick, S.H. van den Boorn, G.M. Henderson, 2018. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology, 46 (5), pp. 463-466.
M. Tagliavento, B.W. Lauridsen, L. Stemmerik, 2020. Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition–Evidence from framboidal pyrite distribution in the upper Maastrichtian Rørdal Mb., Danish Basin. Cretaceous Research, 106, Article 104223.
R. Takashima, H. Nishi, K. Hayashi, H. Okada, H. Kawahata, T. Yamanaka, A.G. Fernando, M. Mampuku, 2009. Litho-, bio-and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (1–2), pp. 61-74.
R. Takashima, H. Nishi, T. Yamanaka, T. Tomosugi, A.G. Fernando, K. Tanabe, K. Moriya, F. Kawabe, K. Hayashi, 2011. Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2. Nature Communications, 2 (1), p. 234.
A. Tewari, M.B. Hart, M.P. Watkinson, 1996. Foraminiferal recovery after the mid-Cretaceous oceanic anoxic events (OAEs) in the Cauvery Basin, southeast India. Geological Society, London, Special Publications, 102 (1), pp. 237-244.
H.R. Thierstein, 1980. Selective dissolution of Late Cretaceous and earliest Tertiary calcareous nannofossils: experimental evidence. Cretaceous Research, 1 (2), pp. 165-176.
J. Thurow, M. Moullade, H.J. Brumsack, E. Masure, J. Taugourdeau- Lantz, K. Dunham, 1988. The Cenomanian/Turonian boundary event (CTBE) at Hole 641A, ODP Leg 103 (compared with the CTBE interval at Site 398). Proceedings of the Ocean Drilling Program, Scientific Results, 103, pp. 587-634.
Z. Touati, 2017. Evidence of bottom-redox conditions during oceanic anoxic event 2 (OAE2) in Wadi Bazina, Northern Tunisia (Southern Tethyan margin). Arabian Journal of Geosciences, 10, pp. 1-15.
J. Trabucho Alexandre, E. Tuenter, G.A. Henstra, K.J. van der Zwan, R.S. van de Wal, H.A. Dijkstra, P.L. de Boer, 2010. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography, 25 (4) (2010).
N. Tribovillard, T.J. Algeo, T. Lyons, A. Riboulleau, 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232 (1–2), pp. 12-32.
H. Tsikos, H.C. Jenkyns, B. Walsworth-Bell, M.R. Petrizzo, A. Forster, S. Kolonic, E. Erba, I.P. Silva, M. Baas, T. Wagner, J.S. Damsté, 2004. Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. Journal of the Geological Society, 161 (4), pp. 711-719.
S. Turgeon, H.J. Brumsack, 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy. Chemical Geology, 234 (3–4), pp. 321-339.
R.V. Tyson, 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry, 32 (2), pp. 333-339.
B. Valle, P.F. Dal'Bó, M. Mendes, J. Favoreto, A.L. Rigueti, L. Borghi, J. de Oliveira Mendonça, R. Silva Jr, 2019. The expression of the oceanic anoxic event 2 (OAE2) in the northeast of Brazil (Sergipe-Alagoas Basin). Palaeogeography, Palaeoclimatology, Palaeoecology, 529, pp. 12-23.
E.C. van Bentum, A. Hetzel, H.J. Brumsack, A. Forster, G.J. Reichart, J.S.S. Damste, 2009. Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian–Turonian oceanic anoxic event using biomarker and trace metal proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 280 (3–4), pp. 489-498.
E.C. van Bentum, G.J. Reichart, J.S.S. Damsté, 2012a. Organic matter provenance, palaeoproductivity and bottom water anoxia during the Cenomanian/Turonian oceanic anoxic event in the Newfoundland Basin (northern proto–North Atlantic Ocean). Organic Geochemistry, 50, pp. 11-18.
E.C. van Bentum, G.J. Reichart, A. Forster, J.S. Sinninghe Damsté, 2012b. Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO 2 and paleo productivity. Biogeosciences, 9 (2), pp. 717-731.
N.A.G.M. Van Helmond, A. Sluijs, J.S. Sinninghe Damsté, G.J. Reichart, S. Voigt, J. Erbacher, J. Pross, H. Brinkhuis, 2015. Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Climate of the Past, 11 (3), pp. 495-508.
S. Voigt, J. Erbacher, J. Mutterlose, W. Weiss, T. Westerhold, F. Wiese, M. Wilmsen, T. Wonik, 2008. The Cenomanian-Turonian of the Wunstorf section-(North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsletters in Stratigraphy, 43 (1), p. 65.
M.T. Von Breymann, K.C. Emeis, E. Suess, 1992. Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator. Geological Society, London, Special Publications, 64 (1), pp. 273-284.
M. Wagreich, A.V. Bojar, R.F. Sachsenhofer, S. Neuhuber, H. Egger, 2008. Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria). Cretaceous Research, 29 (5–6), pp. 965-975.
J. Wang, L.G. Bulot, K.G. Taylor, J. Redfern, 2021. Controls and timing of Cenomanian-Turonian organic enrichment and relationship to the OAE2 event in Morocco, North Africa. Marine and Petroleum Geology, 128, Article 105013.
E. Wang, Y. Feng, T. Guo, M. Li, L. Xiong, G.G. Lash, X. Dong, T. Wang, J. Ouyang, 2023. Sedimentary differentiation triggered by the Toarcian Oceanic Anoxic Event and formation of lacustrine shale oil reservoirs: Organic matter accumulation and pore system evolution of the Early Jurassic sedimentary succession, Sichuan Basin, China. Journal of Asian Earth Sciences, 256, p. 105825.
I. Wendler, 2013. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Science Reviews, 126, pp. 116-146.
S. Westermann, M. Caron, N. Fiet, D. Fleitmann, V. Matera, T. Adatte, K.B. Föllmi, 2010. Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm. Cretaceous Research, 31 (5), pp. 500-514.
S. Westermann, D. Vance, V. Cameron, C. Archer, S.A. Robinson, 2014. Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 404, pp. 178-189.
P.B. Wignall, R. Newton, 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298 (7), pp. 537-552.
A.A.H. Wonders, 1980. Middle and late Cretaceous planktonic Foraminifera of the western Mediterranean area. Utrecht University (1980)Doctoral dissertation.
H. Wu, S. Zhang, G. Jiang, Q. Huang, 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278 (3–4), pp. 308-323.
H. Yao, X. Chen, R. Yin, S.E. Grasby, H. Weissert, X. Gu, C. Wang, 2021. Mercury evidence of intense volcanism preceded oceanic anoxic event 1d. Geophysical Research Letters, 48 (5), Article e2020GL091508.
I.O. Yilmaz, D. Altiner, U.K. Tekin, O. Tuysuz, F. Ocakoglu, S. Acikalin, 2010. Cenomanian–Turonian Oceanic Anoxic Event (OAE2) in the Sakarya Zone, northwestern Turkey: sedimentological, cyclostratigraphic, and geochemical records. Cretaceous Research, 31 (2), pp. 207-226. |