|
|
A combined tectono-climatic control on Holocene sedimentation in Ladakh Himalaya, India: Clues from Anisotropy of Magnetic Susceptibility (AMS) of lake sediments |
B.V. Lakshmia,*, K. Deenadayalana, Md. Mujahed Babaa, Saumitra Misrab |
a Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218, India;
b Discipline of Geological Sciences, SAEES, University of KwaZulu-Natal, Durban 4000, South Africa |
|
|
Abstract Anisotropy of Magnetic Susceptibility (AMS) data from a ~27.8 m thick soft sedimentary mud sequence (~10.5-3.25 k yrs) from the Spituk Palaeolake Sequence (SPSS) of Holocene age, located in the northern bank of the Indus River in the Leh-Ladakh Himalaya, show effects of tectonic versus climate dynamics responsible for the Himalayan sedimentation. The sedimentary sequence, consisting of alternating of aeolian sand and glacio-fluvial mud flow deposits, has been subdivided into an older Last Glacier Phase I (LGP 1) and a younger Last Glacier Phase II (LGP 2), where the termination of each phase is marked by the occurrence of gravel beds of thickness ≤1 m, which were deposited due to glacial melting. The present AMS data along with previously published information on sedimentology confirm that the mudflow deposits of the LGP 1 and LGP 2 phases were deposited in a lacustrine environment under glacio-fluvial conditions. However, a weak fluvial flow towards NW and NE could have existed for the LGP 1 and LGP 2, respectively. The glacial beds terminating LGP 1 and LGP 2 appear to have formed by climatic warming and tectonic activity, respectively. Hence, the Holocene Himalayan sedimentation was influenced by both climatic and tectonic activities. However, the thickness of the gravel bed (~0.8 m) terminating LGP 2 occupies only ~ 2.8 vol % of the total studied thickness ~28 m, of the SPSS in the present study, which indicated a lesser control of tectonism in the growth of the Himalaya in and around the study area.
|
Received: 14 July 2023
|
Corresponding Authors:
* Indian Institute of Geomagnetism Kalamboli highway, New Panvel, Navi Mumbai 410218, India. E-mail addresses: lakshmi.bv@iigm.res.in, lakshmi.nadiminty@gmail.com (B.V. Lakshmi).
|
|
|
|
D.P. Agrawal, R. Dodia, B.S. Kotlia, H. Razdan, A. Sahni, 1989. The Plio-Pleistocene geologic and climatic record of the Kashmir valley, India: a review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, pp. 267-286, http://doi.org/10.1016/0031-0182(89)90008-4.
P.L. Barnard, L.A. Owen, M.C. Sharma, R.C. Finkel, 2001. Natural and human-induced land sliding in the Garhwal Himalaya of northern India. Geomorphology, 40 (1–2), pp. 21-35, http://doi.org/10.1016/S0169-555X(01)00035-6.
N. Basavaiah, E. Appel, B.V. Lakshmi, K. Deenadayalan, K.V.V. Satyanarayana, S. Misra, N. Juyal, M.A. Malik, 2010. Revised magnetostratigraphy and characteristics of the fluviolacustrine sedimentation of the Kashmir Basin, India, during Pliocene-Pleistocene. Journal of Geophysical Research: Solid Earth, 115, Article B08105, http://doi.org/10.1029/2009JB006858.
R. Bhutani, K. Pande, T.R. Venkatesan, 2009. 40Ar–39Ar dating of volcanic rocks of the Shyok suture zone in north– westtrans-Himalaya: Implications for the post-collision evolution of the Shyok suture zone. Journal of Asian Earth Sciences, 34 (2), pp. 168-177, http://doi.org/10.1016/j.jseaes.2008.03.013.
R. Bilham, 2019. Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. P.J., Treloar, M.P., Searle (Eds.), Himalayan Tectonics: A Modern Synthesis, 483, Geological Society, London, Special Publications, pp. 423-482.
J.H. Blothe, H. Munack, O. Korup, A. Fülling, E. Garzanti, A. Resentini, P.W. Kubik, 2014. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews, 94, pp. 102-119, http://doi.org/10.1016/j.quascirev.2014.04.011.
B. Bookhagen, C. Rasmus, M. Thiede, R. Strecker, 2005. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33 (2), pp. 149-152, http://doi.org/10.1130/G20982.1.
D.W. Burbank, G.D. Johnson, 1982. Intermontane-basin development in the past 4 Myr in the north-west Himalaya. Nature, 298, pp. 432-436, http://doi.org/10.1038/298432a0.
H.M. Burgisser, A. Gansser, J. Pika, 1982. Late Glacial lake sediments of the Indus valley area, northwestern Himalayas. Eclogae Geologicae Helvetiae, 75, pp. 51-63.
M. Coleman, K. Hodges, 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374, pp. 49-52, http://doi.org/10.1038/374049a0.
R. Day, M. Fuller, V.A. Schmidt, 1977. Hysteresis properties of titanomagnetites: grainsize and compositional dependence. Physics of the Earth and Planetary Interiors, 13 (4), pp. 260-267.
J. Dearing, 1999. Environmental Magnetic Susceptibility Using the Bartington MS2 System (second edition), Chinese Publications, Kenilworth (1999).
D.J. Dunlop, Ö. Özdemir, 1997. Rock Magnetism Fundamentals and Frontiers. Cambridge University Press, Cambridge, http://doi.org/10.1017/CBO9780511612794.
B. Ellwood, 1980. Application of the anisotropy of magnetic susceptibility method as an indicator of bottom-water flow direction. Marine Geology, 34, pp. M83-M90, http://doi.org/10.1016/0025-3227(80)90066-3.
M.E. Evans, F. Heller, 2003. Environmental magnetism: principles and applications of enviromagnetics. International Geophysical Series, Academic Press, p. 293p.
J.C. Fontes, F. Gasse, E. Gilbert, 1996. Holocene environmental changes in lake Bangong basin (western Tibet). Part I: Chronology and stable isotopes of carbonates of Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, pp. 25-47.
M. Fort, D.W. Burbank, B. Freytet, 1989. Lacustrine sedimentation in a semi-arid alpine setting: an example from Ladakh, northwestern Himalaya. Quaternary Research, 31, pp. 332-352, http://doi.org/10.1016/0033-5894(89)90041-0.
F. Gasse, M. Arnold, J.C. Fontes, M. Fort, E. Gilbert, A. Huc, Bingyan Li, Yuanfang Li, Qing Liu, F. Melieres, E. Van Campo, Fubao Wang, Qingsong Zhang, 1991. A 13000-year climate record from western Tibet. Nature, 353, pp. 742-745.
S.L. Ge, X.F. Shi, Y.G. Liu, K.S. Wang, J.J. Zou, J.Y. Diao, Z.W. Zhu, C.J. Wang, 2012. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan. Chinese Science Bulletin, 57, pp. 660-672.
L. Granar, 1958. Magnetic measurements on Swedish varved sediments. Arkive fur Geofysik, 3, pp. 1-40.
N. Hamilton, A.I. Rees, 1970. The use of magnetic fabric in paleocurrent estimation. S.K. Runcorn (Ed.), Palaeogeophysics, Academic Press, London, pp. 445-464.
K. Honegger, V. Dietrich, W. Frank, A. Gansser, M. Thöni, V. Trommsdorff, 1982. Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth and Planetary Science Letters, 60, pp. 253-292, http://doi.org/10.1016/0012-821X(82)90007-3.
Y. Itoh, M. Tamaki, O. Takano, 2013. Rock magnetic properties of sedimentary rocks in Central Hokkaidod: Insights into sedimentary and tectonic processes on an active margin. Y. Itoh (Ed.), Mechanism of Sedimentary Basin Formation: Multidisciplinary Approach on Active Plate Margins, InTech, Rijeka, pp. 233-253.
S.S.R. Jamieson, H.D. Sinclair, L.A. Kirstein, R.S. Purves, 2004. Tectonic forcing of longitudinal valleys in the Himalaya: Morphological analysis of the Ladakh Batholith, North India. Geomorphology, 58, pp. 49-65, http://doi.org/10.1016/S0169-555X(03)00185-5.
V. Jelínek, 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79 (3–4), pp. 63-67.
P.S. Jena, R. Bhushan, H. Raj, A.J. Dabhi, S. Sharma, A.D. Shukla, N. Juyal, 2022. Relict proglacial lake of Spituk (Leh), northwest (NW) Himalaya: A repository of hydrological changes during Marine Isotopic Stage (MIS)-2. Palaeogeography, Palaeoclimatology, Palaeoecology, 602, p. 111164.
R.F. King, 1955. The remanent magnetism of artificially deposited sediments. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 7 (3), pp. 115-134, http://doi.org/10.1111/j.1365-246X.1955.tb06558.x.
B.V. Lakshmi, K. Deenadayalan, P.B. Gawali, S. Misra, 2020. Effects of Killari earthquake on the paleo-channel of Tirna River Basin from CentralIndia using anisotropy of magnetic susceptibility. Scientific Reports, 10, Article 20587, http://doi.org/10.1038/s41598-020-77542-9.
P. Le Fort, 1975. Himalayas: the collided range. Present knowledge of the continental arc. American Journal of Science, 275-A, pp. 1-44.
Q. Liu, A.P. Roberts, J. Torrent, C.S. Horng, J.C. Larrasoaña, 2007. What do the HIRM and S-ratio really measure in environmental magnetism?. Geochemistry Geophysics Geosystems, 8 (9), p. Q09011, http://dx.doi.org/10.1029/2007GC001717.
B. Liu, Y. Saito, T. Yamazaki, A. Abdeldayem, H. Oda, K. Hori, Q. Zhao, 2001. Paleocurrent analysis for late Pleistocene–Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data. Marine Geology, 176, pp. 175-189, http://doi.org/10.1016/S0025-3227(01)00151-7.
R. Lyons, F. Oldfield, E. Williams, 2010. Mineral magnetic properties of surface soils and sands across four North African transects and links to climatic gradients. Geochemistry Geophysics Geosystems, 11, p. Q08023, http://dx.doi.org/10.1029/2010GC003183.
L. Meynadier, J.P. Valet, R. Weeks, N.J. Shackleton, V.L. Hagee, 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth and Planetary Science Letters, 114 (1), pp. 39-57, http://doi.org/10.1016/0012-821X(92)90150-T.
W.A. Mitchell, P.J. Taylor, H. Osmaston, 1999. Quaternary geology in Zanskar, NW Indian Himalaya: evidence for restricted glaciation and preglacial topography. Journal of Asian Earth Sciences, 17, pp. 307-318.
P. Molnar, 1984. Structure and tectonics of the Himalaya: constraints and implications of geophysical data. Annual Review of Earth and Planetary Sciences, 12, pp. 489-516, http://doi.org/10.1146/annurev.ea.12.050184.002421.
P. Molnar, B.C. Burchfiel, Z.Y. Zhao, K. Liang, S.J. Wang, M.M. Huang, 1987. The geologic evolution of northern Tibet: Results from an expedition to Ulugh Muztagh. Science, 235, pp. 299-304.
S.A.I. Mujtaba, R. Lal, H.S. Saini, P. Kumar, N.C. Pant, 2018. Formation and breaching of two palaeolakes around Leh, Indus valley, during the late Quaternary. Geological Society Special Publications, 462, pp. 23-34, https://doi.org/10.1144/SP462.3.
E. Norin, 1946. Geological Explorations in Western Tibet. Reports from the Scientific Expedition to the North-Western Provinces of China under the Leadership of Dr. Sven Hedin/3. Thule, p. 214.
B. Novak, B. Housen, Y. Kitamura, T. Kanamatsu, K. Kawamura, 2014. Magnetic fabric analyses as a method for determining sediment transport and deposition in deep sea sediments. Marine Geology, 356, pp. 19-30, http://doi.org/10.1016/j.margeo.2013.12.001.
L.A. Owen, G. Thackray, R.S. Anderson, J. Briner, D. Kaufman, G. Roe, W. Pfeffer, C. Yi, 2009. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology, 103, pp. 158-171.
O. Ozdemir, D.J. Dunlop, B.M. Moskowitz, 2002. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters, 194, pp. 343-358.
D. Pal, R.A.K. Srivastava, N.S. Mathur, 1978. Tectonic framework of the miogeosynclinal sedimentation in Ladakh Himalaya: a critical analysis. Himalayan Geology, 8 (1), pp. 500-523.
R.K. Pant, N.R. Phadtare, L.S. Chamyal, N. Juyal, 2005. Quaternary deposits in Ladakh and Karakoram Himalaya: A treasure trove of the palaeoclimate records. Current Science, 88, pp. 1789-1798.
B. Phartiyal, A. Sharma, G. Ch. Kothyari, 2013. Damming of River Indus during Late Quaternary in Ladakh Region of Trans-Himalaya, NW India: Implications to Lake formation-climate and tectonics. Chinese Science Bulletin, 58 (1), pp. 142-155, http://doi.org/10.1360/tb-2013-suppl008.
B. Phartiyal, A. Sharma, R. Upadhyay, Ram-Awatar, A.K. Sinha, 2005. Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya—A study based on field observations. Geomorphology, 65, pp. 241-256, http://doi.org/10.1016/j.geomorph.2004.09.004.
B. Phartiyal, A. Sharma, 2009. Soft-sediment deformation structures in the Late Quaternary sediments of Ladakh: Evidence for multiple phases of seismic tremors in the North western Himalayan Region. Journal of Asian Earth Sciences, 34, pp. 761-770.
R.J. Phillips, 2008. Geological map of the Karakoram Fault Zone, eastern Karakoram, Ladakh, NW Himalaya. Journal of Maps, 4, pp. 21-37, http://doi.org/10.4113/jom.2008.98.
J. Piper, M. Elliot, B. Kneller, 1996. Anisotropy of magnetic susceptibility in a Paleozoicflysch basin: the Windermere Supergroup, northern England. Sedimentary Geology, 106, pp. 235-258, http://doi.org/10.1016/S0037-0738(96)00011-5.
S. Rawat, N.R. Phadtare, S.J. Sangode, 2012. The Younger Dryas cold event in NW Himalaya based on pollen record from the Chandra Tal area in Himachal Pradesh, India. Current Science, 102 (8), pp. 1193-1198.
S. Rawat, A.K. Gupta, P. Srivastava, S.J. Sangode, H.C. Nainwal, 2015. A 13,000 year record of environmental magnetic variations in the lake and peat deposits from the Chandra valley, Lahaul: Implications to Holocene monsoonal variability in the NW Himalaya2015, Palaeogeography, Palaeoclimatology, Palaeoecology, 440, pp. 116-127.
A.I. Rees, W.A. Woodall, 1975. The magnetic fabric of some laboratory deposited sands. Earth and Planetary Science Letters, 25, pp. 121-130, https://doi.org/10.1016/0012-821X(75)90188-0.
P. Reimer, W.E.N. Austin, E. Bard, A. Bayliss, P.G. Blackwell, C. Bronk Ramsey, M. Butzin, R.L. Edwards, M. Friedrich, P.M. Grootes, T.P. Guilderson, I. Hajdas, T.J. Heaton, A. Hogg, B. Kromer, S.W. Manning, R. Muscheler, J.G. Palmer, C. Pearson, J. van der Plicht, D.A. Reim Richards, E.M. Scott, J.R. Southon, C.S.M. Turney, L. Wacker, F. Adolphi, U. Büntgen, S. Fahrni, A. Fogtmann-Schulz, R. Friedrich, P. Köhler, S. Kudsk, F. Miyake, J. Olsen, M. Sakamoto, A. Sookdeo, S. Talamo, 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kB). Radiocarbon, 62, http://doi.org/10.1017/RDC.2020.41.
S.J. Sangode, T. Bagati, 1995. Tectono-climatic signatures in higher Himalayan lakes: a palaeomagnetic rock magnetic approach in the lacustrine sediments of Lamayuru, Ladakh, India. Himalayan Geology, 6, pp. 51-60.
S.J. Sangode, K.R. Gupta, 2010. An overview of two decades of Quaternary research in India: Some reflections based on bibliographic analysis. Episodes, 33, pp. 109-115.
S.J. Sangode, R.K. Mazari, 2007. Mineral magnetic response to climate variability in the high latitude Kioto Paleolake, Spiti Valley, Northwestern Himalaya. Himalayan Geology, 28 (2), pp. 1-9.
D.A. Sant, S.K. Wadhawan, R.K. Ganjoo, N. Basavaiah, P. Sukumaran, S. Bhattacharya, 2011a. Linkage of paraglacial processes from last glacial to recent inferred from Spituk sequence, Leh valley, Ladakh Himalaya. Journal of the Geological Society of India, 78, pp. 147-156.
D.A. Sant, S.K. Wadhawan, R.K. Ganjoo, N. Basavaiah, P. Sukumaran, S. Bhattacharya, 2011b. Morphostratigraphy and palaeoclimate appraisal of the Leh valley, Ladakh Himalayas, India. Journal of the Geological Society of India, 77, pp. 499-510.
U. Scharer, R.H. Xu, C.J. Allègre, 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa- Xigaze region, Tibet. Earth and Planetary Science Letters, 69 (2), pp. 311-320, http://doi.org/10.1016/0012-821X(84)90190-0.
M.P. Searle, D.J.W. Cooper, A.J. Rex, M. Colchen, 1988. Collision tectonics of the Ladhak-Zanskar Himalaya. Philosophical Transactions of the Royal Society A, 326 (1589), pp. 117-150, http://doi.org/10.1098/rsta.1988.0082.
M.P. Searle, K.T. Pickering, D.J.W. Cooper, 1990. Restoration and evolution of the intermontane Indus molasses basin, Ladakh Himalaya, India. Tectonophysics, 174, pp. 301-314, http://doi.org/10.1016/0040-1951(90)90327-5.
M.P. Searle, P.J. Treloar, 2019. An introduction to Himalayan tectonics: a modern synthesis. Geological Society London Special Publications, 483 (1), http://doi.org/10.1144/SP483-2019-20.
H.D. Sinclair, N. Jaffey, 2001. Sedimentology of the Indus Group, Ladakh, northern India: implications for the timing of initiation of the palaeo-Indus River. Journal of the Geological Society of London, 158, pp. 151-162.
A.K. Sinha, 1997. The concept of terrane and its application in Himalayan and adjoining regions. A.K. Sinha, F.P. Sassi, D. Papanikalao (Eds.), Geodynamic Domains in Alpine Himalayan Tethys, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi (1997).
M. Stuiver, P.J. Reimer, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, pp. 215-230.
D.H. Tarling, F. Hrouda, 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall Publishers, London, p. 218.
V.C. Thakur, 1981. Regional framework and geodynamic Evolution of the Indus-Tsangpo Suture Zone in the Ladakh Himalaya. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 72 (2), pp. 89-97, http://doi.org/10.1017/S0263593300009925.
V.C. Thakur, D.K. Misra, 1984. Tectonic framework of Indus and Shyok suture zones in Eastern Ladakh, Northwest Himalaya. Tectonophysics, 101 (3–4), pp. 207-220, http://doi.org/10.1016/0040-1951(84)90114-8.
R. Thompson, F. Oldfield, 1986. Environmental Magnetism, Allen & Unwin London (227 (1986).
K.S. Valdiya, 1988. Tectonics and evolution of the central sector of the Himalaya. Philosophical Transactions of the Royal Society A, 326 (1589), pp. 151-175, http://doi.org/10.1098/rsta.1988.0083.
E.E. Veloso, R. Anma, T. Ota, T. Komiya, S. Kahashuma, T. Yamazaki, 2007. Paleocurrent patterns of the sedimentary sequence of the Taitaoophiolite constrained by anisotropy of magnetic susceptibility and paleomagnetic analysis. Sedimentary Geology, 201, pp. 446-460, http://doi.org/10.1016/j.sedgeo.2007.07.005.
J. Walden, F. Oldfield, J. Smith, 1999. Environmental magnetism, a practical guide. Technical Guide No, 6: Quaternary Research Association, London, pp. 98-112.
Y.B. Wang, X.Q. Liu, U.K. Herzschuh, 2010. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews, 103, pp. 135-153.
G. Yan, F.B. Wang, G.R. Shi, F. Li, 1999. Palynological and stable isotopic study of palaeoenvironmental change on the northeastern Tibetan plateau in the last 30000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, pp. 147-159.
A. Yin, 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76, pp. 1-131, http://doi.org/10.1016/j.earscirev.2005.05.004. |
|
|
|