Allan J.R., Matthews R.K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29(6), 797-817. https://doi.org/10.1111/j.1365-3091.1982.tb00085.x.
Allwood A.C., Walter M.R., Kamber B.S., Marshall C.P., Burch I.W., 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094), 714-718. https://doi.org/10.1038/nature04764.
Andres M.S., Reid R.P.,2006. Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas. Sedimentary Geology, 185(3-4), 319-328. https://doi.org/10.1016/j.sedgeo.2005.12.020.
Berner R.A.,1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249(4975), 1382-1386. https://doi.org/10.1126/science.249.4975.1382.
Cullers R.L.,1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22), 4955-4972. https://doi.org/10.1016/0016-7037(94)90224-0.
Cullers R.L.,2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3), 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8.
Cullers R.L., Basu A., Suttner L.J., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical Geology, 70(4), 335-348. https://doi.org/10.1016/0009-2541(88)90123-4.
Cullers R.L., Podkovyrov V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104(1-2), 77-93. https://doi.org/10.1016/S0301-9268(00)00090-5.
Dong Y.P., Santosh M.,2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, central China. Gondwana Research, 29, 1-40. https://doi.org/10.1016/j.gr.2015.06.009.
Ezaki Y., Liu J.B., Adachi N., Yan Z.,2017. Microbialite development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia Formation (Cambrian Series 3) in Shandong Province, North China. Palaios, 32(9), 559-571. https://doi.org/10.2110/palo.2016.097.
Feng Z.Z., Peng Y.M., Jin Z.K., Bao Z.D.,2002. Lithofacies palaeogeography of the Middle Cambrian in China. Journal of Palaeogeography (Chinese Edition), 4(2), 1-11. https://doi.org/10.3969/j.issn.1671-1505.2002.02.001 (in Chinese with English abstract).
Glass L.M., Phillips D., 2006. The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology, 34(6), 461-464. https://doi.org/10.1130/G22122.1.
Huang B.C., Zhu R.X., Otofuji Y., Yang Z.Y., 2000. The Early Paleozoic paleogeography of the North China Block and the other major blocks of China. Chinese Science Bulletin, 45(12), 1057-1065. https://doi.org/10.1007/BF02887174.
Jahnert R.J., Collins L.B., 2013. Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology, 60(4), 1071-1099. https://doi.org/10.1111/sed.12023.
Kamber B.S., Bolhar R., Webb G.E.,2004. Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Research, 132(4), 379-399. https://doi.org/10.1016/j.precamres.2004.03.006.
Kaufman A.J., Knoll A.H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4), 27-49. https://doi.org/10.1016/0301-9268(94)00070-8.
Lee J.H., Chen J.T., Chough S.K.,2015. The middle-late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145, 66-84. https://doi.org/10.1016/j.earscirev.2015.03.002.
Lee J.H., Hong J., Choh S.J., Lee D.J., Woo J., Riding R.,2016. Early recovery of sponge framework reefs after Cambrian archaeocyath extinction: Zhangxia Formation (early Cambrian Series 3), Shandong, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 269-276. https://doi.org/10.1016/j.palaeo.2016.06.018.
Lee J.H., Lee H.S., Chen J.T., Woo J., Chough S.K.,2014. Calcified microbial reefs in Cambrian Series 2, North China Platform: Implications for the evolution of Cambrian calcified microbes. Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 30-42. https://doi.org/10.1016/j.palaeo.2014.03.020.
Lee J.H., Riding R.,2018. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 181, 98-121. https://doi.org/10.1016/j.earscirev.2018.04.003.
Li F., Gong Q.L., Burne R.V., Tang H., Su C.P., Zeng K., Zhang Y.F., Tan X.C.,2019. Ooid factories operating under hothouse conditions in the earliest Triassic of South China. Global and Planetary Change, 172, 336-354. https://doi.org/10.1016/j.gloplacha.2018.10.012.
Li W.P., Zheng Y.F., Zhao Y.Y.,2017. Geochemical evidence from marine carbonate for enhanced terrigenous input into seawater during the Ediacaran-Cambrian transition in South China. Precambrian Research, 291, 83-97. https://doi.org/10.1016/j.precamres.2017.01.015.
Lin J., Liu Y.S., Yang Y.H., Hu Z.C.,2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1(1), 5-27. https://doi.org/10.1016/j.sesci.2016.04.002.
Ma R.S., Zhang L., Du Y.S., Wang X.F.,2011. Sedimentary characteristics and its geological implications of Cambrian tempestite in northern Henan Province. Geological Science and Technology Information, 30(4), 15-20. https://doi.org/10.3969/j.issn.1000-7849.2011.04.002 (in Chinese with English abstract).
Ma Y.S., Mei M.X., Zhou R.X., Yang W., 2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing.Acta Petrologica Sinica, 33(4), 1021-1036 (in Chinese with English abstract).
Madhavaraju J.,González-León, C.M., Lee, Y.I., Armstrong-Altrin, J.S., Reyes-Campero, L.M., 2010. Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretaceous Research, 31(4), 400-414. https://doi.org/10.1016/j.cretres.2010.05.006.
Madhavaraju J., Lee Y.I., González-León C.M., 2013. Diagenetic significance of carbon, oxygen and strontium isotopic compositions in the Aptian-Albian Mural Formation in Cerro Pimas area, northern Sonora, Mexico. Journal of Iberian Geology, 39(1), 73-88. https://doi.org/10.5209/rev_JIGE.2013.v39.n1.41749.
Madhavaraju J., Lee Y.I., Scott R.W.,González-León, C.M., Jenkyns, H.C., Saucedo-Samaniego, J.C., Ramasamy, S., 2018. High-resolution carbonate isotopic study of the Mural Formation (Cerro Pimas section), Sonora, México: Implications for early Albian oceanic anoxic events. Journal of South American Earth Sciences, 82, 329-345. https://doi.org/10.1016/j.jsames.2017.10.019.
Madhavaraju J., Löser H., Lee Y.I.,Lozano-Santacruz, R., Pi-Puig, T., 2016. Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, México: Implications for REE source and paleo-redox conditions. Journal of South American Earth Sciences, 66, 149-165. https://doi.org/10.1016/j.jsames.2015.11.013.
Madhavaraju J.,Saucedo-Samaniego, J.C., Lee, Y.I., Scott, R.W., González-León, C.M., Ramírez-Montoya, E., 2021b. Chemostratigraphy of the lower Cretaceous Mural Limestone, Rancho Bufalo section, Sonora, Mexico: Implications for OAE 1b. Marine and Petroleum Geology, 123, 104734. https://doi.org/10.1016/j.marpetgeo.2020.104734.
Madhavaraju J., Scott R.W., Selvaraj K., Lee Y.I., Löser H., 2021a. Isotopic chemostratigraphy and biostratigraphy of Lower Cretaceous Alisitos Formation (Punta China section), Baja California, Mexico. Geological Journal, 56(5), 2550-2570. https://doi.org/10.1002/gj.3823.
Mancini E.A., Llinás J.C., Parcell W.C., Aurell M., Bádenas B., Leinfelder R.R., Benson D.J., 2004. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico. AAPG Bulletin, 88 (11), 1573-1602. https://doi.org/10.1306/06210404017.
Mángano M.G., Buatois L.A.,2017. The Cambrian revolutions: Trace-fossil record, timing, links and geobiological impact. Earth-Science Reviews, 173, 96-108. https://doi.org/10.1016/j.earscirev.2017.08.009.
Myrow P.M., Tice L., Archuleta B., Clark B., Taylor J.F., Ripperdan R.L., 2004. Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles. Sedimentology, 51(5), 973-996. https://doi.org/10.1111/j.1365-3091.2004.00657.x.
Ni S.L.,2017. Forced regressive sediments in the Changhsia Formation at the Xiaweidian section in the western suburb of Beijing.Journal of Stratigraphy, 41(1), 103-109 (in Chinese with English abstract).
Nothdurft L.D., Webb G.E., Kamber B.S., 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68(2), 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8.
Nozaki Y., Zhang J., Amakawa H., 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2), 329-340. https://doi.org/10.1016/S0012-821X(97)00034-4.
Pei F.,2000. Division and correlation of the North China type Cambrian biostratigraphic units of Henan Province.Henan Geology, 18(2), 97-106 (in Chinese with English abstract).
Pei F., Zhang H.Q., Yan G.S., 2008. Stratigraphic Paleontology Research of Henan Province, Early Paleozoic Era, North China. Zhengzhou: Yellow River Water Resources Press, pp. 1-302 (in Chinese).
Pruss S.B., Knoll A.H.,2017. Environmental covariation of metazoans and microbialites in the Lower Ordovician Boat Harbour Formation, Newfoundland. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 917-929. https://doi.org/10.1016/j.palaeo.2017.08.007.
Qi Y.A., Wang M., Li D., Sun C.Y., Dai M.Y.,2012. Ichnofabrics and their sedimentary environments from the lower part of the Middle Cambrian Zhangxia Formation, Longmen area, Luoyang City. Earth Science-Journal of China University of Geosciences, 37(4), 693-706. https://doi.org/10.3799/dqkx.2012.078(in Chinese with English abstract).
Reid R.P., James N.P., Macintyre I.G., Dupraz C.P., Burne R.V., 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49(1), 299-324. https://doi.org/10.1007/s10347-003-0036-8.
Riaz M., Jafarian A., Koeshidayatullah A., Frontalini F., Jiang L., Latif K., Zafar T.,2023. Tracking depositional and geochemical variations in the Cambrian North China Platform: Insights from sedimentology, geochemistry, and C-O isotopic records. Sedimentary Geology, 443, 106301. https://doi.org/10.1016/j.sedgeo.2022.106301.
Riding R.,2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185(3-4), 229-238. https://doi.org/10.1016/j.sedgeo.2005.12.015.
Riding R., Liang L.,2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2), 101-115. https://doi.org/10.1016/j.palaeo.2004.11.018.
Roerdink D.L., Ronen Y., Strauss H., Mason P.R.D., 2022. Emergence of felsic crust and subaerial weathering recorded in Palaeoarchaean barite. Nature Geoscience, 15(3), 227-232. https://doi.org/10.1038/s41561-022-00902-9.
Russell W.A., Papanastassiou D.A., Tombrello T.A., 1978. Ca isotope fractionation on the Earth and other solar system materials. Geochimica et Cosmochimica Acta, 42(8), 1075-1090. https://doi.org/10.1016/0016-7037(78)90105-9.
Saucedo-Samaniego,J.C., Madhavaraju, J., Sial, A.N., Monreal, R., Scott, R.W., Perez-Arvizu, O., 2021. Upper Aptian-lower Albian seawater composition and OAEs: Geochemistry of Agua Salada and Lampazos Formations, Sonora, Mexico. Journal of South American Earth Sciences, 109, 103193. https://doi.org/10.1016/j.jsames.2021.103193.
Seilacher A.,1999. Biomat-related lifestyles in the Precambrian. Palaios, 14(1), 86-93. https://doi.org/10.2307/3515363.
Shi H., Huang S.J., Shen L.C., Zhang M.,2003. Strontium isotope composition of the Cambrian Luojiaguo section in Xiushan, Chongqing and its stratigraphic significance. Journal of Stratigraphy, 27(1), 71-76. https://doi.org/10.3969/j.issn.0253-4959.2003.01.013 (in Chinese with English abstract).
Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford, pp. 1-312.
Tomás S., Homann M., Mutti M., Amour F., Christ N., Immenhauser A., Agar S.M., Kabiri L.,2013. Alternation of microbial mounds and ooid shoals (Middle Jurassic, Morocco): Response to paleoenvironmental changes. Sedimentary Geology, 294, 68-82. https://doi.org/10.1016/j.sedgeo.2013.05.008.
Van Kranendonk M.J., Webb G.E., Kamber B.S., 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology, 1(2), 91-108. https://doi.org/10.1046/j.1472-4669.2003.00014.x.
Veizer J., Prokoph A.,2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146, 92-104. https://doi.org/10.1016/j.earscirev.2015.03.008.
Wang M., Guo W.F., Yang W.T., Qi Y.A., Dai M.Y., Chang Y.G., 2021. Thrombolites and ichnofossils in the Middle Cambrian of south North China Block: Implications for the environmental controls on the evolution of microbes and metazoans. Geological Journal, 56(12), 5882-5893. https://doi.org/10.1002/gj.4221.
Wang M., Li K.N., Yang W.T., Dai M.Y., Bai W.B., Qi Y.A.,2019. The trace fossil Thalassinoides bacae in the Cambrian Zhangxia Formation (Miaolingian Series) of North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109333. https://doi.org/10.1016/j.palaeo.2019.109333.
Webb G.E., Kamber B.S., 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9), 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7.
Wu Y.B., Zheng Y.F.,2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4), 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007.
Wu Y.Y., Zhang T.S., Lü J.L., Liu Y.,2017. The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing, China. Journal of Palaeogeography, 6(2), 117-131. https://doi.org/10.1016/j.jop.2017.03.003.
Xin H., Chen J.T., Gao B., Li F., Myrow P.M.,2023. Spatio-temporal distribution of the Cambrian maceriate reefs across the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 614, 111429. https://doi.org/10.1016/j.palaeo.2023.111429.
Yan Z., Liu J.B., Ezaki Y., Adachi N., Du S.X.,2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 474, 45-57. https://doi.org/10.1016/j.palaeo.2016.07.009.
Yang Z.Y., Otofuji Y., Sun Z.M., Huang B.C., 2002. Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results. Geophysical Journal International, 151(1), 1-10. https://doi.org/10.1046/j.1365-246X.2002.01656.x.
Zhang X.Y., Qi Y.A., Dai M.Y., Chai S., 2015. Coupling variation of oncoids and trace fossils in the Zhangxia Formation (Cambrian Series 3), Dengfeng, western Henan Province.Acta Micropalaeontologica Sinica, 32(2), 184-193 (in Chinese with English abstract).
Zhong S.J., Mucci A., 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations. Geochimica et Cosmochimica Acta, 59(3), 443-453. https://doi.org/10.1016/0016-7037(94)00381-U. |