Abels H.A.,Dupont-Nivet, G., Xiao, G., Bosboom, R., Krijgsman, W., 2011. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4), 399-412. https://doi.org/10.1016/j.palaeo.2010.11.028.
Bijl P.K., Schouten S., Sluijs A., Reichart G.J., Zachos J.C., Brinkhuis H., 2009. Early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature, 461(7265), 776-778. https://doi.org/10.1038/nature08399.
Bond D.P.G., Wignall P.B., 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7-8), 1265-1279. https://doi.org/10.1130/b30042.1.
Brooks P.W.,1986. Unusual biological marker geochemistry of oils and possible source rocks, offshore Beaufort-Mackenzie Delta, Canada. Organic Geochemistry, 10(1-3), 401-406. https://doi.org/10.1016/0146-6380(86)90039-2.
Calvert S.E., Pedersen T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113, 67-88. https://doi.org/10.1016/0025-3227(93)90150-t.
Cao J., Wu M., Chan Y., Hu K., Bian L.Z., Wang L.G., Zhang Y.,2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Geochemistry, 72, 245-252. https://doi.org/10.1016/j.chemer.2011.12.002.
Castañeda I.S., Schouten S.,2011. A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quaternary Science Reviews, 30, 2851-2891. https://doi.org/10.1016/j.quascirev.2011.07.009.
Chen J., An Z., Head J.,1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research, 51(3), 215-219. https://doi.org/10.1006/qres.1999.2038.
Chen Z., Qiao R., Li C., Wang D., Gao Y.,2022. Hydrocarbon generation potential and model of the deep lacustrine source rocks in the Dongying Depression, Bohai Bay Basin. Marine and Petroleum Geology, 140, 105656. https://doi.org/10.1016/j.marpetgeo.2022.105656.
Chen Z.H., Chai Z., Cao Y.C., Liu Q., Zhang S.C., Yuan G.H.,2019. Suppression of thermal maturity indicators in lacustrine source rocks: A case study of Dongying Depression, eastern China. Marine and Petroleum Geology, 109,108-127. https://doi.org/10.1016/j.marpetgeo.2019.05.041.
Connan J., Cassau A.M., 1980. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochimica et Cosmochimica Acta, 44, 1-23. https://doi.org/10.1016/0016-7037(80)90173-8.
Demaison G.J., Moore G.T., 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2, 9-31. https://doi.org/10.1016/0146-6380(80)90017-0.
Dembicki H.,2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93, 34-356. https://doi.org/10.1306/10230808076.
Evans D., Sagoo N., Renema W., Cotton L.J., Muller W., Todd J.A., Saraswati P.K., Stassen P., Ziegler M., Pearson P.N., Valdes P.J., Affek H.P., 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences of the United States of America, 115, 1174-1179. https://doi.org/10.1073/pnas.1714744115.
Fu Q., Liu B., Niu C., Zhao S.,2019. The geochemical evidences of sulphur oil sources in the BZ35/36 structures of the Huanghekou Sag, Bohai Bay Basin, China. Petroleum Research, 4(2), 164-172. https://doi.org/10.1016/j.ptlrs.2018.12.002.
Gav A., Grandstaf D.E., 1980. Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Research, 12(1-4), 349-373. https://doi.org/10.1016/0301-9268(80)90035-2.
Hackley P.C., Lewan M., 2018. Understanding and distinguishing reflectance measurements of solid bitumen and vitrinite using hydrous pyrolysis: Implications to petroleum assessment. AAPG Bulletin, 102(6), 1119-1140. https://doi.org/10.1306/08291717097.
Hakimi M.H., Ahmed A., Kahal A.Y., Hersi O.S., Faifi H.J., Qaysi S.,2020. Organic geochemistry and basin modeling of Late Cretaceous Harshiyat Formation in the onshore and offshore basins in Yemen: Implications for effective source rock potential and hydrocarbon generation. Marine and Petroleum Geology, 122, 104701. https://doi.org/10.1016/j.marpetgeo.2020.104701.
Hanson A.D., Zhang S.C., Moldowan J.M., Liang D., Zhang B., 2000. Molecular organic geochemistry of the Tarim Basin, northwest China. AAPG Bulletin, 84, 1109-1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d.
He T., Lu S., Li W., Tan Z., Zhang X., 2018. Effect of salinity on source rock formation and its control on the oil content in shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China. Energy Fuels, 32, 6698-6707. https://doi.org/10.1021/acs.energyfuels.8b01075.
He T., Li W., Lu S., Yang E., Jing T., Ying J., Zhu P., Wang X., Pan W., Chen Z.,2022. Distribution and isotopic signature of 2-alkyl-1,3,4-trimethylbenzenes in the Lower Paleozoic source rocks and oils of Tarim Basin: Implications for the oil-source correlation. Petroleum Science, 19, 2572-2582. https://doi.org/10.1016/j.petsci.2022.07.014.
He T., Zeng Q., Lu S., Li W., Li M., Wen Z., Yang E., Jing T., Ying J., Zhu P., Wang X., Pan W., Zhang B., Chen Z.,2023. Aryl isoprenoids from the Lower Paleozoic in the Tarim Basin, NW China: Insight into deep ancient hydrocarbon exploration. Geoenergy Science and Engineering, 211666. https://doi.org/10.1016/j.geoen.2023.211666.
Hughes W.B., Holba A.G., Dzou L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59, 3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o.
ICCP, 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, 459-471. https://doi.org/10.1016/s0140-6701(02)86016-7.
Jiang C., Bennett B., Ferri F., Chen Z., Ardakani O.H.,McMechan, M., 2021. Geochemistry of the Cretaceous Chinkeh oil from Maxhamish field and Garbutt black shale in the Liard Basin, Canada: Implications for a liquid-rich shale hydrocarbon resource. International Journal of Coal Geology, 238, 103716. https://doi.org/10.1016/j.coal.2021.103716.
Jiang F., Pang X., Bai J., Zhou X., Li J., Guo Y., 2016. Comprehensive assessment of source rocks in the Bohai Sea area, eastern China. AAPG Bulletin, 100(6), 969-1002. https://doi.org/10.1306/02101613092.
Jiang Z., Liu H., Zhang S., Su X., Jiang Z., 2011. Sedimentary characteristics of large-scale lacustrine beach-bars and their formation in the Eocene Boxing Sag of Bohai Bay Basin, East China. Sedimentology, 58, 1087-1112. https://doi.org.10.1111/j.1365-3091.2010.01196.x.
Kimura H., Watanabe Y., 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29 (11), 995-998. https://doi.org/10.1130/0091-7613(2001)029<0995:oaatpc>2.0.co;2.
Kus J., Tolmacheva T., Dolezych M., Gaedicke C., Franke D., Brandes C., Blumenberg M., Piepjohn K., Pletsch T.,2015. Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic. International Journal of Coal Geology, 152, 125-146. https://doi.org/10.1016/j.coal.2015.11.003.
Li C., Xu F., Huang X., Jiang T., Xu G., Guo P., 2022. Migration directions of crude oils from multiple source rock intervals based on biomarkers: A case study of Neogene reservoirs in the Bodong Sag, Bohai Bay Basin. Energy Reports, 8, 8151-8164. https://doi.org/10.1016/J.EGYR.2022.05.292.
Li C., Xu G., Xu F., Yu Q., Liang H.,2021a. A model for faults to link the Neogene reservoirs to the Paleogene organic-rich sediments in low-relief regions of the south Bohai Sea, China. Journal of Petroleum Science and Engineering, 200, 108360. https://doi.org/10.1016/j.petrol.2021.108360.
Li H., Niu C., Xu P., Liu Q., Zhang X., Cui H.,2021b. Discovery of Bozhong 13-2 Archean large monoblock volatile buried hill oilfield and its oil and gas exploration significance. Natural Gas Industry B, 8(4), 376-383. https://doi.org/10.1016/j.ngib.2021.07.008.
Liu M., Chen D., Zhou X., Yuan W., Jiang M., Liu L.,2019. Climatic and oceanic changes during the Middle-Late Ordovician transition in the Tarim Basin, NW China and implications for the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 522-535. https://doi.org/10.1016/j.palaeo.2018.10.032.
Liu M., Ji C., Hu H., Xia G., Yi H., Them T.R., Sun P., Chen D.,2021. Variations in microbial ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from biomarker and carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 580, 110626. https://doi.org/10.1016/j.palaeo.2021.110626.
Liu M., Sun P., Them T.R., Li Y., Sun S., Gao X., Huang X., Tang Y.,2020. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China. Global and Planetary Change, 191, 103214. https://doi.org/10.1016/j.gloplacha.2020.103214.
Liu M., Fang C., Chen D., 2024a. Syndepositional and diagenetic processes in the pigmentation of Middle Ordovician carbonate red beds in South China.Sedimentary Geology, 470, 106722.
Liu M., Chen D., Ma H., Ding Y., 2024b. Do red marine carbonates represent oxic environments? New understanding from the Upper Ordovician marine limestone in Tarim Basin, China.Marine and Petroleum Geology, 171, 107166.
Liu W., Liu M., Yang T., Liu X., Them T.R., Wang K., Bian C., Meng Q., Li Y., Zeng X., Zhao W.,2022. Organic matter accumulations in the Santonian-Campanian (Upper Cretaceous) lacustrine Nenjiang shale (K2n) in the Songliao Basin, NE China: Terrestrial responses to OAE3? International Journal of Coal Geology, 260, 104069. https://doi.org/10.1016/j.coal.2022.104069.
Lotfy, M.M., Gawad, E.A.A.E., Abdelghafar, A., 2020. Hydrocarbon source-rock potential of the Jurassic succession in eastern part of the North Western Desert, Egypt. Egyptian Journal of Petroleum, 20, 243-249. https://doi.org/10.1016/j.ejpe.2020.09.002.
Luo Q., Zhang L., Zhong N., Wu J., Goodarzi F., Sanei H., Skovsted C.B., Suchý V., Li M., Ye F., Cao W., Liu A., Min X., Pang Y., Yao L., Wu J.,2021. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation. International Journal of Coal Geology, 244, 103813. https://doi.org/10.1016/j.coal.2021.103813.
Mello M.R., Telnaes N., Caglianone P.C., Chicarelli M.I., Brassell S.C., Maxwell J.R., 1988. Organic geochemical characterization of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins. Organic Geochemistry, 13, 31-45. https://doi.org/10.1016/0146-6380(88)90023-x.
Moore R.A., Lieberman B.S.,2009. Preservation of Early and Middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1-2), 57-62. https://doi.org /10.1016/j.palaeo.2009.02.014.
Moradi, A.V., Akkaya, P.S.A., 2016. Geochemistry of the Miocene oil shale (Hancili Formation) in the Cankiri-Corum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting. Sedimentary Geology, 41(7), 289-303. https://doi.org/10.1016/j.sedgeo.2016.05.002.
Niu C., Hou D., Cheng X., Han X., Li Y.,2022. Origin and environmental implications of dibenzothiophenes in the Huanghekou East Sag and the Laizhouwan Northeast Sag, Bohai Bay Basin. Marine and Petroleum Geology, 142, 105739. https://doi.org/10.1016/j.marpetgeo.2022.105739.
Pang Q., Hu G., Hu C., Meng F.,2022. The relationship between Zr/Al and total organic carbon: A proxy for the presence of cryptotephra in black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 602, 111155. https://doi.org/ 10.1016/j.palaeo.2022.111155.
Pang X., Li M., Li S., Jin Z.,2005. Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai Bay Basin: Part 3. Estimating hydrocarbon expulsion from the Shahejie Formation. Organic Geochemistry, 36, 497-510. https://doi.org/10.1016/j.orggeochem.2004.12.001.
Pickel W., Kus J., Flores D., Kalaitzidis S., Christanis K., Cardott B.J.,MiszKennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., ICCP, 2017. Classification of liptinite ICCP System 1994. International Journal of Coal Geology, 169, 40-61. https://doi.org/10.1016/j.coal.2016.11.004.
Peters K.E., Cassa M.R., 1994. Applied source rock geochemistry. In: Magoon, L.B., Dow, W.G., (Eds.). The Petroleum System from Source to Trap. AAPG Memories, pp. 93-117.
Peters K.E., Fraser T.H., Amris W., Rustanto B., 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83, 1927-1942. https://doi.org/10.1306/E4FD4643-1732-11D7-8645000102C1865D.
Peters K.E., Walters C.C., Moldowan J.M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge.
Qiao R., Chen Z.,2022. Petroleum phase evolution at high temperature: A combined study of oil cracking experiment and deep oil in Dongying Depression, eastern China. Fuel, 326, 124978. https://doi.org/10.1016/j.fuel.2022.124978.
Qiao R., Chen Z., Li C., Wang D., Gao Y., Zhao L., Li Y., Liu J.,2022. Geochemistry and accumulation of petroleum in deep lacustrine reservoirs: A case study of Dongying Depression, Bohai Bay Basin. Journal of Petroleum Science and Engineering, 213, 110433. https://doi.org/10.1016/j.petrol.2022.110433.
Quan C., Liu Y.S., Utescher T.,2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366, 302-311. https://doi.org/10.1016/j.palaeo.2012.09.035.
Quan C., Liu Z., Utescher T., Jin J., Shu J., Li Y., Liu Y., 2014. Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Science Reviews, 139, 213-230. https://doi.org/10.1016/J.EARSCIREV.2014.09.005.
Rickard D.,2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522, 62-75. https://doi.org/10.1016/j.palaeo.2019.03.010.
Rontani J.F., Volkman J.K., 2003. Phytol degradation products as biogeochemical tracers in aquatic environments. Organic Geochemistry, 34, 1-35. https://doi.org/10.1016/s0146-6380(02)00185-7.
Ruppert L.F., Hower J.C., Ryder R.T., Levine J.R., Trippi M.H., Grady W.C.,2010. Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian Basin. International Journal of Coal Geology, 81, 169-181. https://doi.org/10.1016/j.coal.2009.12.008.
Shanmugam G.,1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 69, 1241-1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D.
Shi C.H., Cao J., Bao J.P., Zhu C.S., Jiang X.C., Wu M.,2015. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China. Organic Geochemistry, 83(84), 77-93. https://doi.org/10.1016/j.orggeochem.2015.03.008.
Snowdon L.R.,1995. Rock-eval Tmax suppression: Documentation and amelioration. AAPG Bulletin, 79, 1337-1348. https://doi.org/10.1306/7834d4c2-1721-11d7-8645000102c1865d.
Summons R.E., Hope J.M., Swart R., Walter M.R.,2008. Origin of Nama basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Organic Geochemistry, 39, 589-607. https://doi.org/10.1016/j.orggeochem.2007.12.002.
Sun H., Liu L., Jiang X., Huang S., Geng M., Chen S., Li N., Shen P.2019. Distribution characteristics and its controlling factor of lacustrine high-quality source rocks in the Bozhong sag, Bohai Bay Basin. Petroleum Research, 4(3), 227-237. https://doi.org/10.1016/j.ptlrs.2019.06.002.
Sun X., Wang P.,2005. How old is the Asian monsoon system? - Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005.
ten Haven H.L., de Leeuw J.W., Schenck P.A., 1985. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment. Geochimica et Cosmochimica Acta, 49, 2181-2191. https://doi.org/10.1016/0016-7037(85)90075-4.
Tian J., Hao F., Zhou X., Zou H., 2017. Distribution, controlling factors, and oil-source correlation of biodegraded oils in the Bohai offshore area, Bohai Bay Basin, China. AAPG Bulletin, 101(3), 361-386. https://doi.org/10.1306/07251614105.
Tissot B.P., Welte D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-642-87813-8.
Tribovillard N.P., Desprairies A., Lallier-Vergès E., Bertrand P., Moureau N., Ramdani A., Ramanampisoa L., 1994. Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): Productivity versus anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(1/2), 165-181. https://doi.org/10.1016/0031-0182(94)90028-0.
Tyson R.V.,2005. The “productivity versus preservation” controversy: Cause, flaw, and resolution. SEPM Special Publication, 82, 17-33. https://doi.org/10.2110/pec.05.82.0017.
Volkman J.K.,1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, 83-99. https://doi.org/10.1016/0146-6380(86)90089-6.
Volkman J.K., Barrett S.M., Blackburn S.I., 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Organic Geochemistry, 30, 307-318. https://doi.org/ 10.1016/s0146-6380(99)00009-1.
Wang C., Scott R.W., Wan X., Graham S.A., Huang Y., Wang P., Wu H., Dean W.E., Zhang L.,2013a. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth-Science Reviews, 126, 275-299. https://doi.org/10.1016/j.earscirev.2013.08.016.
Wang J., Cao Y., Liu K., Costanzo A., Feely M.,2018. Diagenesis and evolution of the lower Eocene red-bed sandstone reservoirs in the Dongying Depression, China. Marine and Petroleum Geology, 94, 230-245. https://doi.org/10.1016/j.marpetgeo.2018.04.011.
Wang J., Pang Y., Cao Y., Peng J., Liu K., Liu H.,2021b. Sedimentary environment constraints on the diagenetic evolution of clastic reservoirs: Examples from the Eocene “red-bed” and “gray-bed” in the Dongying Depression, China. Marine and Petroleum Geology, 131, 105153. https://doi.org/10.1016/j.marpetgeo.2021.105153.
Wang P., Huang Y., Wang C., Feng Z., Huang Q.,2013b. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385(1), 125-136. https://doi.org/10.1016/j.palaeo.2012.09.027.
Wang Q., Hao F., Niu C., Zou H., Miao Q., Yin J., Cao Y., Liu M.,2021a. Origins and deep petroleum dynamic accumulation in the southwest part of the Bozhong depression, Bohai Bay Basin: Insights from geochemical and geological evidences. Marine and Petroleum Geology, 134, 105347. https://doi.org/10.1016/j.marpetgeo.2021.105347.
Wang Q., Hao F., Xue Y., Niu C., Zou H., Yin J., Miao Q., Liu M., 2022. Geochemistry and origin of the Bozhong 19-6 condensates: Implications for deep gas accumulation in the Bohai Bay Basin. AAPG Bulletin, 106 (4), 869-896. https://doi.org/10.1306/10042120106.
Wilkin R.T., Barnes H.L., Brantley S.L., 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20), 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8.
Xue Y., Wang D., 2020. Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(2), 280-291. https://doi.org/10.1016/s1876-3804(20)60046-5.
Yan D., Wang H., Fu Q., Chen Z., He J., Gao Z.,2015. Organic matter accumulation of Late Ordovician sediments in North Guizhou Province, China: Sulfur isotope and trace element evidences. Marine and Petroleum Geology, 59, 348-358. https://doi.org/10.1016/j.marpetgeo.2014.09.017.
Yin J., Xu C., Hao F., Miao Q., Wang Z., Zou H.,2020. Controls on organic matter enrichment in source rocks of the Shahejie Formation in the southwestern Bozhong Sag, Bohai Bay Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110026. https://doi.org/10.1016/j.palaeo.2020.110026.
Zachos J.C., Pagani M., Sloan L., Thomas E., Billups K., 2001. Trends, rhythms, and aberrations in Global Climate 65 Ma to Present. Science, 292(5517), 686-693. https://doi.org/10.1126/science.1059412.
Zachos J.C., Wara M.W., Bohaty S., Delaney M.L., Petrizzo M.R., Brill A., Bralower T.J., Premoli-silva I., 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302(5650), 1551-1554. https://doi.org/10.1126/science.1090110.
Zou C., Ma F., Pan S., Zhang X., Wu S., Fu G., Wang H., Yang Z.,2023. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Science Frontiers, 30(1), 128-142. https://doi.org/10.13745/j.esf.sf.2022.8.29.
Zhang J., Wang C., Wang J., Wang L., Jiao Y., Hu R.,2021. Palaeoclimate of the Paleogene Dongying Formation in Bozhong Sag of Bohai Bay Basin. Petroleum Research, 6(4), 368-378. https://doi.org/10.1016/j.ptlrs.2021.04.002.
Zhang Z., Zhu G., Han J., Sun C., Huang C., Li J., Zhao K.,2022. Genesis and preservation of the giant ultradeep Hadexun petroleum accumulation in the Tarim Basin, China. Journal of Petroleum Science and Engineering, 208, 109249. https://doi.org/10.1016/j.petrol.2021.109249.
Zhao Z., Hou D., Cheng X., Xu H., Ma C., Zhou X., Xu C.,2021. Geochemical and palynological characteristics of the Paleogene source rocks in the Northeastern Laizhouwan Sag, Bohai Bay Basin, China: Hydrocarbon potential, depositional environment, and factors controlling organic matter enrichment. Marine and Petroleum Geology, 124, 104792. https://doi.org/10.1016/j.marpetgeo.2020.104792.
Zheng D., Pang X., Ma X., Li C., Zheng T., Zhou L.,2019a. Hydrocarbon generation and expulsion characteristics of the source rocks in the third member of the Upper Triassic Xujiahe Formation and its effect on conventional and unconventional hydrocarbon resource potential in the Sichuan Basin. Marine and Petroleum Geology, 109, 175-192. https://doi.org/10.1016/j.marpetgeo.2019.06.014.
Zheng T., Ma X., Pang X., Wang W., Zheng D., Huang Y., Wang X., Wang K.,2019b. Organic geochemistry of the Upper Triassic T3x5 source rocks and the hydrocarbon generation and expulsion characteristics in Sichuan Basin, Central China. Journal of Petroleum Science and Engineering, 173, 1340-1354. https://doi.org/10.1016/j.petrol.2018.10.070.
Zheng T., Zieger L., Baniasad A., Grohmann S., Hu T., Littke R.,2022. The Shahejie Formation in the Dongpu Depression, Bohai Bay Basin, China: Geochemical investigation of the origin, deposition and preservation of organic matter in a saline lacustrine environment during the Middle Eocene. International Journal of Coal Geology, 253, 103967. https://doi.org/10.1016/j.coal.2022.103967.
Zuo Y., Qiu N., Zhang Y., Li C., Li J., Guo Y., Pang X., 2011. Geothermal regime and hydrocarbon kitchen evolution of the offshore Bohai Bay Basin, North China. AAPG Bulletin, 95(5), 749-769. https://doi.org/10.1306/09271010079. |