Reply to discussions by Zavala (2019) and by Van Loon, HÜeneke, and Mulder (2019) on Shanmugam, G. (2018, Journal of Palaeogeography, 7 (3): 197-238): ´The hyperpycnite problem´
G. Shanmugam*
Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA
In this reply, I respond to 18 issues associated with comments made by Zavala (e.g., inverse- to normally- graded sequence, origin of massive sands, experimental sandy debris flows, tidal rhythmites, facies models, etc.), and 10 issues associated with comments made by Van Loon et al. (e.g., 16 types of hyperpycnal flows, anthropogenic hyperpycnal flow, etc.).
G. Shanmugam. Reply to discussions by Zavala (2019) and by Van Loon, HÜeneke, and Mulder (2019) on Shanmugam, G. (2018, Journal of Palaeogeography, 7 (3): 197-238): ´The hyperpycnite problem´[J]. Journal of Palaeogeography, 2019, 8(4): 408-421.
G. Shanmugam. Reply to discussions by Zavala (2019) and by Van Loon, HÜeneke, and Mulder (2019) on Shanmugam, G. (2018, Journal of Palaeogeography, 7 (3): 197-238): ´The hyperpycnite problem´[J]. Journal of Palaeogeography, 2019, 8(4): 408-421.
Allen, J. R. L., 1985. Loose-boundary hydraulics and fluid mechanics: Selected advances since 1961. In: Brenchley PJ and Williams PJ (Eds.). Sedimentology: Recent developments and applied aspects, Oxford: Geological Society by Blackwell Scientific Publications, p. 7-28.
[2]
Bagnold, R.A., 1956. The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London, Series A. Mathematical and Physical Sciences 249: 235-297
[3]
Bagnold, R.A., 1962. Auto-suspension of transported sediment. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences 265: 315-319.
[4]
Bates, C.C. 1953. Rational theory of delta formation. AAPG Bulletin 37 (9): 2119-2162
[5]
Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits, A graphic Approach to Facies Interpretation. Elsevier, Amsterdam, p. 168.
[6]
Cannon, G. A.. 1978. Circulation In the Strait of Juan De Fuca: Some Recent Oceanographic Observations. NOAA Technical Report ERL 399-PMEL 29, 55 p.
[7]
Covault, J.A., B.W. Romans, A. Fildani, M. McGann, and S.A. Graham. 2010. Rapid climatic signal propagation from source to sink in a Southern California sediment-routing system. The Journal of Geology 118 (3): 247-259.
[8]
Dadson, S., N. Hovius, S. Pegg, W.B. Dade, M.J. Horng, and H. Chen. 2005. Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research 110: 1-13.
Duda, J.J., Warrick, J.A., Magirl, C.S.,2011. Coastal and Lower Elwha River, Washington, Prior to Dam Removal-History, Status, and Defining Characteristics. In: Duda, J.J., Warrick, J.A., Magirl, C.S., (Eds.), Coastal Habitats of the Elwha River: Biological and Physical Patterns and Processes Prior to Dam Removal. U.S. Geological Survey Scientific Investigations Report 2011-5120. Chapter 1.
[11]
Folk, R. L., 1968, Petrology of sedimentary rocks: Austin, Texas, Hemphill Publishing, 170 p.
[12]
Foreman, M. G. G., Callendar, W., MacFadyen, A., Hickey, B. M., Thomson, R. E., di Lorenzo, E., 2008. Modeling the generation of the Juan de Fuca Eddy. Journal of Geophysical Research: Oceans, Volume 113, Issue C3, CiteID C03006
[13]
Fossati, M., Piedra-Cueva, I., 2013. A 3D hydrodynamic numerical model of the RÍo de la Plata and Montevideos coastal zone. Applied Mathematical Modelling 37: 1310-1332.
[14]
Fossati, M., Cayocca, F., Piedra-Cueva, I., 2014. Fine sediment dynamics in the RÍo de la Plata. Advances in Geosciences., 39: 75-80.
[15]
Framiňan, M. B., and O. B. Brown. 1996. Study of the Rio de la Plata turbidity front, Part I: Spatial and temporal distribution,Continental Shelf Research 16: 1259-1282.
[16]
Gao, S., D. Wang, Y. Yang, L. Zhou, Y. Zhao, W. Gao, Z. Han, Q. Yu, and G. Li. 2015. Holocene sedimentary systems on a broad continental shelf with abundant river input: Process-product relationships. In: P.D. Clift, J. Harff, J. Wu, and Y. Qui (Eds.). River-dominated shelf sediments of east Asian seas, , 429: 223-259. London: Geological Society, Special Publications.
[17]
Hayakawa, S. I. 1968. Use the Right Word, Reader´s Digest Association, Incorporation, New York. 726 p.
Khripounoff, A., A. Vangriesheim, N. Babonneau, P. Crassous, B. Dennielou, and B. Savoye. 2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology 194 (3-4): 151-158.
[20]
Klein, G.D. 1975. Resedimented pelagic carbonate and volcaniclastic sediments and sedimentary structures in Leg 30 DSDP cores from the western equatorial Pacific. Geology, v. 3, p. 39-42.
[21]
Krumbein, W. C., Sloss, L. L.1963, Stratigraphy and sedimentation, 2nd ed.: San Francisco, W. H. Freeman and Company, 660 p.
[22]
Kuenen, Ph. H. 1937. Experiments in connection with Daly´s hypothesis on the formation of submarine canyons. Leidsche Geologische Mededeelingen 8: 327-335.
[23]
Kuenen, Ph. H., 1951. Properties of turbidity currents of high density. In: Hough, J.L. (Ed.). Turbidity currents and the transportation of coarse sediments to deep water. A Symposium, SEPM Special Publication 2, pp. 14-33.
[24]
Lowe, D.R., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, discussion. AAPG Bulletin 81: 460-465.
[25]
Marr, J.G., Harff, P.A., Shanmugam, G., & Parker, G. 2001. Experiments on subaqueous sandy gravity flows, the role of clay and water content in flow dynamics and depositional structures. GSA Bulletin 113: 1377-1386.
Middleton, G.V., Hampton, M.A. 1973. Sediment gravity flows, mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H. (Eds.). Turbidites and Deep-water Sedimentation. California, Los Angeles, pp. 1e38. PacifiSection SEPM.
[28]
Middleton, G.V., Wilcock, P.R. 1994. Mechanics in the Earth and Environmental Sciences. Cambridge University Press, Cambridge, p. 459.
[29]
Mohrig, D., K.X. Whipple, M. Hondzo, C. Ellis, and G. Parker. 1998. Hydroplaning of subaqueous debris flows. GSA Bulletin 110: 387-394.
[30]
Morales de Luna, T., E.D. Fernández Nieto, and M.J. Castro DÍaz. 2017. Derivation of a multilayer approach to model suspended sediment transport: Application to hyperpycnal and hypopycnal plumes. Communications in Computational Physics 22 (5): 1439-1485.
[31]
Mulder, T., J.P.M. Syvitski, S. Migeon, J.-C. Faugères, and B. Savoye. 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits: A review. Marine and Petroleum Geology 20: 861-882.
[32]
Mulder, T., S. Zaragosi, J.-M. Jouanneau, G. Bellaiche, S. Guerinaud, and J. Querneau. 2009. Deposits related to the failure of the Malpasset Dam in 1959. An analogue for hyperpycnal deposits from j?kulhlaups. Marine Geology 260 (1-4): 81-89.
[33]
Mutti, E., 1992. Turbidite Sandstones. Agip Special Publication, Milan, Italy, p. 275.
[34]
Mutti. E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S., Fava, L., 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Continuing Education Course Note Series#39, Tulsa, Oklahoma, p. 61. .
[35]
Normark, W.R. and J.A. Reid. 2003. Extensive deposits on the Pacific plate from Late Pleistocene North American glacial lake outbursts. Journal of Geology 111 (6): 617-637.
[36]
Normark, W. R., Piper, D. J. W., Romans, B. W., Covault, J. A., Dartnell, P., and Sliter, R. 2009. Submarine canyon and fan systems of the California continental borderland. In: Lee, H. J., and Normark, W. R., (Eds.). Earth science in the urban ocean: the southern California continental borderland.Geological Society of America Special Paper. 454, p. 141-168.
[37]
Prior, D.B., and B.D. Bornhold. 1990. The underwater development of Holocene fan deltas, In: Colella, A., and D.B. Prior, (Eds.). Coarse-Grained Deltas. International Association of Sedimentologists Special Publication 10: 75-90.
[38]
Ritchie, A.C., Warrick, J.A., East, A., et al. 2018. Morphodynamic evolution following sediment release from the world´s largest dam removal. Scientific Reports | (2018) 8:13279 | DOI:10.1038/s41598-018-30817-8 1, 13 p.
[39]
Sacchi, M., F. Molisso, C. Violante, E. Esposito, D. Insinga, C. Lubritto, S. Porfido and T. Tóth. 2009. Insights into flood-dominated fan-deltas: very high-resolution seismic examples off the Amalfi cliffed coasts, eastern Tyrrhenian Sea. In: Violante, C. (Ed.). Geohazard in Rocky Coastal Areas. Geological Society, London, Special Publications 322: 33-71.
[40]
Sanders, J.E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V. (Ed.). Primary Sedimentary Structures and Their Hydrodynamic Interpretation, 12. SEPM Special Publication, Tulsa, OK, pp. 192-219.
[41]
Shanmugam, G. 1996. High-density turbidity currents, are they sandy debris flows? Journal of Sedimentary Research 66: 2-10.
[42]
Shanmugam, G. 2000. 50 Years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models - a critical perspective. Marine and Petroleum Geology 17: 285-342
[43]
Shanmugam, G. 2002a. Ten turbidite myths. Earth-Science Reviews 58: 311-341.
[44]
Shanmugam, G. 2002b. Discussion on Mulder et al. 2001, Geo-Marine Letters, 21, 86_93. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters 22: 108-111.
[45]
Shanmugam, G. 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology 20: 471-491.
[46]
Shanmugam, G. 2006. Deep-water Processes and Facies Models, Implications for Sandstone Petroleum Reservoirs, vol. 5. Elsevier, Handbook of Petroleum Exploration and Production, Amsterdam, 476 pp.
[47]
Shanmugam, G. 2012. New Perspectives on Deep-water Sandstones, Origin, Recognition, Initiation, and Reservoir Quality. In: Handbook of Petroleum Exploration and Production, vol. 9: Amsterdam, Elsevier, 524 p.
[48]
Shanmugam, G. 2014a. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep?marine baroclinic sands: Reply. AAPG Bulletin, 98: 858-879.
[49]
Shanmugam, G. 2014b. Review of research in internal-wave and internal-tide deposits of China, discussion. Journal of Palaeogeography 3 (4): 332-350.
[50]
Shanmugam, G. 2015. The landslide problem. Journal of Palaeogeography 4(2): 109-166.
[51]
Shanmugam, G. 2018a. The hyperpycnite problem. Journal of Palaeogeography 7 (3): 197-238.
[52]
Shanmugam, G. 2018b. A global satellite survey of density plumes at river mouths and at other environments: Plume configurations, external controls, and implications for deep-water sedimentation. Petroleum Exploration and Development 45 (4): 640-661.
[53]
Shanmugam, G. 2019a. Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development: Discussion. AAPG Bulletin103(2): 505-510.
[54]
Shanmugam, G. 2019b. Slides, Slumps, Debris Flows, Turbidity Currents, Hyperpycnal Flows, and Bottom Currents. In: Encyclopedia of Ocean Sciences (Third Edition) Volume 4, 228-257.
[55]
Shanmugam, G., and R.J. Moiola. 1997. Reinterpretation of depositional processes in a classic flysch sequence in the Pennsylvanian Jackfork Group, Ouachita Mountains. Reply. AAPG Bulletin 81: 476-491.
[56]
Shanmugam, G., R.B. Bloch, J.E. Damuth, R.J. Hodgkinson. 1997, Basin-floor fans in the North Sea: Sequence stratigraphic models vs. sedimentary facies: Reply to Hiscott et al. AAPG Bulletin 81: 666-672.
[57]
Shanmugam, G., Shrivastava, S.K., Das, B. 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India), implications. Journal of Sedimentary Research 79: 736-756.
[58]
Shepard, F.P., Dill, R.F., 1966. Submarine Canyons and Other Sea Valleys. Rand McNally & Cooporation, Chicago, p. 381.
[59]
Shepard, F.P., Marshall, N.F., McLoughlin, P.A., Sullivan, G.G. 1979. Currents in submarine canyons and other sea valleys. AAPG Studies in Geoloy 8: 173.
[60]
. 2016. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body. GSA Bulletin 128: 1717-1724.
[61]
Thomson, R. E., MiháLy, S. F., Kulikov, E. A. 2007. Estuarine versus transient flow regimes in Juan de Fuca Strait. Journal of Geophysical Research: Oceans, Volume 112, Issue C9, CiteID C09022
[62]
USGS, 2018. Moving Mountains: Elwha River Still Changing Five Years After World´s Largest Dam-Removal Project: More than 20 million tons of sediment flushed to the sea. USGS News. September 5, 2018.
i. Accessed March 3, 2019.
[63]
Van Loon, A. J. (Tom), Heneke, H., and Mulder, T. 2019. The hyperpycnite problem: Comment. Journal of Palaeogeography 8(3): 314-320.
[64]
Walker, R.G. 1978. Deep-water sandstone facies and ancient submarine fans, models for exploration for stratigraphic traps. AAPG Bulletin 62: 932-966.
[65]
Walker, R.G. 1984. General introduction: facies, facies sequences and facies models. In: Walker, R.G. (Ed.). Facies Models, 2nd Edition, Geoscience Canada, Reprint Series 1, pp. 1-9.
[66]
Wang, H., N. Bi, Y. Wang, Y. Saito, and Z. Yang. 2010. Tide-modulated hyperpycnal flows off the Huanghe (Yellow River) Mouth, China. Earth Surface Processes and Landforms 35 (11): 1315-1329.
[67]
Warrick, J. A., Stevens, A. W. Miller, J. M., Gelfenbaum, G. 2011. Coastal Processes of the Elwha River Delta. In: Duda, J.J., Warrick, J.A., Magirl, C.S., (Eds.). Coastal Habitats of the Elwha River: Biological and Physical Patterns and Processes Prior to Dam Removal. Chapter: 1. U.S. Geological Survey Scientific Investigations Report 2011-5120. Chapter 5.
[68]
Yang, R., Z. Jin, A.J. van Loon, Z. Han, and A. Fan. 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: implications for unconventional petroleum development. AAPG Bulletin 101 (1): 95-117.
[69]
Yang, R., Fan, A., Van Loon, A.J., Han, Z., and Zavala, C. 2018. The influence of hyperpycnal flows on the salinity of deep-marine environments, and implications for the interpretation of marine facies. Marine and Petroleum Geology 98: 1-11.
[70]
Zavala, C. 2019. The new knowledge is written on sedimentary rocks - a comment on Shanmugam´s paper "The hyperpycnite problem". Journal of Palaeogeography 8(3): 306-313.
[71]
Zuffa, G.G., Normark, W.R., Serra, F., and Brunner., C.A. 2000. Turbidite megabeds in an oceanic rift valley recording Jokulhlaups of late Pleistocene glacial lakes of the western United States. The Journal of Geology 108 (3): 253-274.