[1] Baniak G.M., Amskold L., Konhauser K.O., Muehlenbachs K., Pemberton S.G., Gingras M.K.,2014b. Sabkha and burrow-mediated dolomitization in the Mississippian Debolt Formation, northwestern Alberta, Canada. Ichnos 21(3), 158-174. https://doi.org/10.1080/10420940.2014.930036.
[2] Baniak G.M., Gingras M.K., Burns B.A., Pemberton S.G., 2014c. An example of a highly bioturbated, storm-influenced shoreface deposit: Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology 61(5), 1261-1285. https://doi.org/10.1111/sed.12100.
[3] Baniak G.M., Gingras M.K., Burns B.A., Pemberton S.G.,2015. Petrophysical characterization of bioturbated sandstone reservoir facies in the Upper Jurassic Ula Formation, Norwegian North Sea, Europe. Journal of Sedimentary Research 85(1), 62-81. https://doi.org/10.2110/jsr.2015.05.
[4] Baniak G.M., Gingras M.K., Pemberton S.G.,2013. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada. Marine and Petroleum Geology 48, 275-292. https://doi.org/10.1016/j.marpetgeo.2013.08.020.
[5] Baniak G.M.,La Croix, A.D., Polo, C.A., Playter, T.L., Pemberton, S.G., Gingras, M.K., 2014a. Associating X-ray microtomography with permeability contrasts in bioturbated media. Ichnos 21(4), 234-250. https://doi.org/10.1080/10420940.2014.958224.
[6] Bednarz M., McIlroy D., 2012. Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality.AAPG Bulletin 96(10), 1957-1980.
[7] Bednarz M.,McIlroy, D., 2015. Organism-sediment interactions in shale-hydrocarbon reservoir facies — Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. International Journal of Coal Geology 150-151, 238-251. https://doi.org/10.1016/j.coal.2015.09.002.
[8] Ben-Awuah J., Eswaran P., 2015. Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia. Petroleum Exploration and Development 42(2), 223-231. https://doi.org/10.1016/S1876-3804(15)30009-4.
[9] Ben-Awuah,J., Padmanabhan, E., 2014. Impact of bioturbation on reservoir quality: A case study of biogenically reduced permeabilities of reservoir sandstones of the Baram Delta, Sarawak, Malaysia. Journal of Applied Sciences 14(23), 3312-3317. https://doi.org/10.3923/jas.2014.3312.3317.
[10] Buatois L.A., Mángano M.G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. New York: Cambridge University Press, pp. 83-91.
[11] Buatois L.A., Mángano M.G., Alissa A., Carr T.R., 2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a Late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology 152(1-2), 99-132. https://doi.org/10.1016/S0037-0738(01)00287-1.
[12] Chen D.Z., Qian Y.X.,2017. Deep or super-deep dolostone reservoirs: Opportunities and challenges. Journal of Palaeogeography (Chinese Edition) 19(2), 187-196. https://doi.org/10.7605/gdlxb.2017.02.015 (in Chinese with English abstract).
[13] Chen H.H., You W., Feng Y., Lu Z.Y., Hu S.Z., Yun L., Qi L.X., 2014. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe oilfield, Tarim Basin, NW China. Oil and Gas Geology 35(6), 806-819. https://doi.org/10.11743/ogg20140608 (in Chinese with English abstract).
[14] Chen J.Q., Ma K.Y., Pang X.Q., Yang H.J.,2020. Secondary migration of hydrocarbons in Ordovician carbonate reservoirs in the Lunnan area, Tarim Basin. Journal of Petroleum Science and Engineering 188, 106962. https://doi.org/10.1016/j.petrol.2020.106962.
[15] Chen Q.L., Qian Y.X., Ma H.Q., Wang S.Y.,2003. Diagenesis and porosity evolution of the Ordovician carbonate rocks in Tahe oilfield, Tarim Basin. Petroleum Geology and Experiment 25(6), 729-734. https://doi.org/10.3969/j.issn.1001-6112.2003.06.016 (in Chinese with English abstract).
[16] Chen X., Lv B., Huang S., He S.Y., Du Y.X., Zhu X.,2011. Study of leopard fur dolomite in mid-Ordovician Majiagou Formation Hancheng-Xunyi Distinct in Shanxi Province. Xinjiang Geology 29(2), 222-225. https://doi.org/10.3969/j.issn.1000-8845.2011.02.021 (in Chinese with English abstract).
[17] Corlett H.J., Jones B.,2012. Petrographic and geochemical contrasts between calcite- and dolomite-filled burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada: Implications for dolomite formation in Paleozoic burrows. Journal of Sedimentary Research 82(9), 648-663. https://doi.org/10.2110/jsr.2012.57.
[18] Cunningham K.J., Sukop M.C., Huang H.B., Alvarez P.F., Curran H.A., Renken R.A., Dixon J.F., 2009. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones. GSA Bulletin 121(1-2), 164-180. https://doi.org/10.1130/B26392.1.
[19] Deng X.J., Li G.R., Xu G.Q., Xu G.S., Yu H.B., Wang X., Qiao Z.F.,2008. Sedimentary facies division of Yijianfang Formation in the Middle Ordovician of the southern Tahe oilfield. Acta Petrolei Sinica 29(1), 35-40. https://doi.org/10.3321/j.issn:0253-2697.2008.01.006 (in Chinese with English abstract).
[20] Dey J., Sen S., 2017. Impact of bioturbation on reservoir quality and production - A review. Journal of the Geological Society of India 89(4), 460-470. https://doi.org/10.1007/s12594-017-0629-4.
[21] Du Y., Fan T.L., Machel H.G., Gao Z.Q.,2018. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe oilfield, Tarim Basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology 91, 43-70. https://doi.org/10.1016/j.marpetgeo.2017.12.023.
[22] Ekdale A.A., Bromley R.G., 2003. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology 192, 221-227. https://doi.org/10.1016/S0031-0182(02)00686-7.
[23] Eltom H.A., Alqubalee A., Yassin M.A.,2021a. Potential overlooked bioturbated reservoir zones in the shallow marine strata of the Hanifa Formation in central Saudi Arabia. Marine and Petroleum Geology 124, 104798. https://doi.org/10.1016/j.marpetgeo.2020.104798.
[24] Eltom H.A., Goldstein R.H.,2021b. Use of geostatistical modeling to improve the understanding of permeability upscaling in isotropic and anisotropic burrowed reservoirs. Marine and Petroleum Geology 129, 105067. https://doi.org/10.1016/j.marpetgeo.2021.105067.
[25] Eltom H.A., González L.A., Alqubalee A., Amao A.O., Salih M.,2020. Evidence for the development of a superpermeability flow zone by bioturbation in shallow marine strata, upper Jubaila Formation, central Saudi Arabia. Marine and Petroleum Geology 120, 104512. https://doi.org/10.1016/j.marpetgeo.2020.104512.
[26] Eltom H.A., Rankey E.C., Hasiotis S.T., Barati R.,2019. Effect of bioturbation on petrophysical properties: Insights from geostatistical and flow simulation modeling. Marine and Petroleum Geology 104, 259-269. https://doi.org/10.1016/j.marpetgeo.2019.03.019.
[27] Fei A.W., Zhang Z.T.,2002. Bioturbation structures and paleoenvironment analysis of the Middle Ordovician at Jinsushan, Shaanxi. Earth Science (Journal of China University of Geosciences) 27(6), 703-710. https://doi.org/10.3321/j.issn:1000-2383.2002.06.008 (in Chinese with English abstract).
[28] Friesen O.J., Dashtgard S.E., Miller J., Schmitt L., Baldwin C.,2017. Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Marine and Petroleum Geology 82, 371-387. https://doi.org/10.1016/j.marpetgeo.2017.01.019.
[29] Gingras M.K., Baniak G.M., Gordon J., Hovikoski J., Konhauser K.O., La Croix, A.D., Lemiski, R.T., Mendoza, C.A., Pemberton, S.G., Polo, C., Zonneveld, J.P., 2012. Porosity and permeability in bioturbated sediments. In: Knaust, D., Bromley, R. (eds.), Trace Fossils as Indicators of Sedimentary Environments. Amsterdam: Elsevier B.V., pp. 837-868.
[30] Gingras M.K., Mendoza C.A., Pemberton S.G., 2004a. Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin 88 (7), 875-883. https://doi.org/10.1306/01260403065.
[31] Gingras M.K., Pemberton S.G., Muelenbachs K., Machel H., 2004b. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada. Geobiology 2(1), 21-30. https://doi.org/10.1111/j.1472-4677.2004.00022.x.
[32] Gingras M.K., Pemberton S.G., Smith M., 2014. Bioturbation: Reworking sediments for better or worse.Oilfield Review Winter, 26(4): 46-58.
[33] Golab J.A., Smith J.J., Clark A.K., Blome C.D.,2017b. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone, Middle Trinity Aquifer, Northern Bexar County, Texas. Sedimentary Geology 351, 1-10. https://doi.org/10.1016/j.sedgeo.2017.02.001.
[34] Golab J.A., Smith J.J., Clark A.K., Morris R.R.,2017a. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous (Aptian-Albian) Glen Rose Limestone. Palaeogeography, Palaeoclimatology, Palaeoecology 465, 138-155. https://doi.org/10.1016/j.palaeo.2016.10.025.
[35] Gordon J.B., Pemberton S.G., Gingras M.K., Konhauser K.O., 2010. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation, Alberta, Canada. AAPG Bulletin 94 (11), 1779-1795. https://doi.org/10.1306/04061009169.
[36] Guo C., Chen D.Z., Qing H.R., Dong S.F., Li G.R., Wang D., Qian Y.X., Liu C.G.,2016. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China. Marine and Petroleum Geology 72, 295-316. https://doi.org/10.1016/j.marpetgeo.2016.01.023.
[37] Guo C., Chen D.Z., Qing H.R., Zhou X.Q., Ding Y.,2020. Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in western Tarim Basin (NW China). Marine and Petroleum Geology 111, 332-349. https://doi.org/10.1016/j.marpetgeo.2019.08.017.
[38] Guo C., Chen D.Z., Song Y.F., Zhou X.Q., Ding Y., Zhang G.J.,2018. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China). Journal of Asian Earth Sciences 158, 29-48. https://doi.org/10.1016/j.jseaes.2018.02.006.
[39] Han Y.X., Li Z., Liu J.Q., Peng S.T.,2013. Genesis of dolomites in limestone of Yingshan Formation and their effects on poroperm characteristics of carbonate reservoir in Tahe area. Chinese Journal of Geology 48(3), 721-731. https://doi.org/10.3969/j.issn.0563-5020.2013.03.011 (in Chinese with English abstract).
[40] Hsieh A.I., Allen D.M.,MacEachern, J.A., 2015. Statistical modeling of biogenically enhanced permeability in tight reservoir rock. Marine and Petroleum Geology 65, 114-125. https://doi.org/10.1016/j.marpetgeo.2015.04.005.
[41] Hsieh A.I., Allen D.M.,MacEachern, J.A., 2017. Upscaling permeability for reservoir-scale modeling in bioturbated, heterogeneous tight siliciclastic reservoirs: Lower Cretaceous Viking Formation, Provost Field, Alberta, Canada. Marine and Petroleum Geology 88, 1032-1046. https://doi.org/10.1016/j.marpetgeo.2017.09.023.
[42] Hu Y.Z., Niu Y.B., Cui S.L., Dong X.B.,2019. Characteristics of filled burrows in carbonates and the evolution of burrow-mediated pores: A case study from the third member of the Ordovician Majiagou Formation, western Henan Province. Acta Sedimentologica Sinica 37(4), 690-701. https://doi.org/10.14027/j.issn.1000-0550.2018.172(in Chinese with English abstract).
[43] Jin Q., Zhang S., Sun J.F., Wei H.H., Cheng F.Q., Zhang X.D., 2020. Formation and evolution of karst facies of Ordovician carbonate in Tahe oilfield. Acta Petrolei Sinica 41(5), 513-525. https://doi.org/10.7623/syxb202005001 (in Chinese with English abstract).
[44] Knaust D.,2012. Methodology and techniques. In: Knaust, D., Bromley, R.G. (eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64. Amsterdam: Elsevier, pp. 245-264.
[45] Knaust D.,2014. Classification of bioturbation-related reservoir quality in the Khuff Formation (Middle East): Towards a genetic approach. In: Pöppelreiter, M.C. (ed.), Permo-Triassic Sequence of the Arabian Plate. EAGE, pp. 247-267.
[46] Knaust D.,2017. Atlas of Trace fossils in Well Core: Appearance, Taxonomy and Interpretation. Switzerland: Springer Nature, pp. 21-26.
[47] Knaust D., Dorador J.,Rodríguez-Tovar, F.J., 2020. Burrowed matrix powering dual porosity systems - A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Marine and Petroleum Geology 113, 104158. https://doi.org/10.1016/j.marpetgeo.2019.104158.
[48] La Croix,A.D., Gingras, M.K., Pemberton, S.G., Mendoza, C.A., MacEachern, J.A., Lemiski, R.T., 2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Marine and Petroleum Geology 43, 464-477. https://doi.org/10.1016/j.marpetgeo.2012.12.002.
[49] La Croix,A.D., MacEachern, J.A., Ayranci, K., Hsieh, A., Dashtgard, S.E., 2017. An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: Insights from the Lower Cretaceous Viking Formation, Alberta, Canada. Marine and Petroleum Geology 86, 636-654. https://doi.org/10.1016/j.marpetgeo.2017.06.024.
[50] Li Y.,2012. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe oilfield. Journal of China University of Petroleum (Edition of Natural Science) 36(1), 1-7. https://doi.org/10.3969/j.issn.1673-5005.2012.01.001 (in Chinese with English abstract).
[51] Li Y., Jin Q., Zhong J.H., Zou S.Z., 2016. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield, Tarim Basin. Acta Petrolei Sinica 37(3), 289-298. https://doi.org/10.7623/syxb201603001 (in Chinese with English abstract).
[52] Liu H.Y., Shi K.B., Liu B., Song X.M., Guo R., Li Y., Wang G.J., Wang H., Shen Y.C.,2019. Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation, AD oilfield, central Mesopotamian Basin, Iraq. Marine and Petroleum Geology 110, 747-767. https://doi.org/10.1016/j.marpetgeo.2019.07.049.
[53] Liu W., Li Y.H., Zhang T., Li G.R.,2002. Study on the sedimentary facies and sequence stratigraphy of the Ordovician carbonate rock in Tahe oilfield. Petroleum Geology and Experiment 24(2), 104-109. https://doi.org/10.3969/j.issn.1001-6112.2002.02.002 (in Chinese with English abstract).
[54] Mao C., Zhong J.H., Li Y., Wang Y.Z., Niu Y.B., Ni L.T., Shao Z.F., 2014. Ordovician carbonate rock matrix fractured-porous reservoirs in Tahe oilfield, Tarim Basin, NW China. Petroleum Exploration and Development 41(6), 745-753. https://doi.org/10.1016/S1876-3804(14)60088-4.
[55] Niu Y.B., Cui S.L., Hu Y.Z., Zhong J.H., Pan J.N.,2018. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe oilfield. Journal of Palaeogeography (Chinese Edition) 20(4), 691-702. https://doi.org/10.7605/gdlxb.2018.04.050 (in Chinese with English abstract).
[56] Niu Y.B., Cui S.L., Hu Y.Z., Zhong J.H., Wang P.J.,2017. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe oilfield of Tarim Basin. Journal of Palaeogeography (Chinese Edition) 19(2), 353-363. https://doi.org/10.7605/gdlxb.2017.02.027 (in Chinese with English abstract).
[57] Niu Y.B., Marshall J.D., Song H.B., Hu B., Hu Y.Z., Jin Y., Zhang L.J., Pan J.N., Wu W.,2020a. Ichnofabrics and their roles in the modification of petrophysical properties: A case study of the Ordovician Majiagou Formation, northwest Henan Province, China. Sedimentary Geology 409, 105773. https://doi.org/10.1016/j.sedgeo.2020.105773.
[58] Niu Y.B., Xu Z.L., Liu S.X., Zhong J.H., Zhao J.R., Wang P.J.,2020b. Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe oilfield. Journal of Palaeogeography (Chinese Edition) 22(4), 785-798. https://doi.org/10.7605/gdlxb.2020.04.053 (in Chinese with English abstract).
[59] Niu Y.B., Zhong J.H., Wang P.J., Shan T.T., Li R.Z.,2010. Effect of diagenesis on accumulate capability of Ordovician carbonate rock in block 2 of Tahe oilfield. Journal of China University of Petroleum (Edition of Natural Science) 34(6), 13-19. https://doi.org/10.3969/j.issn.1673-5005.2010.06.003 (in Chinese with English abstract).
[60] Oliveira De Araújo,O.M., Aguilera, O., Coletti, G., Valencia, F.L., Buatois, L.A., Lopes, R., 2021. X-ray micro-computed tomography of burrow-related porosity and permeability in shallow-marine equatorial carbonates: A case study from the Miocene Pirabas Formation, Brazil. Marine and Petroleum Geology 127, 104966. https://doi.org/10.1016/j.marpetgeo.2021.104966.
[61] Pak R., Pemberton S.G., 2003. Ichnology of the Yeoman Formation; in Summary of Investigations 2003, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-4.1, CD-ROM, 3, 16.
[62] Pemberton S.G., Gingras M.K., 2005. Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin 89(11), 1493-1517. https://doi.org/10.1306/07050504121.
[63] Rameil N.,2008. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology 212, 70-85. https://doi.org/10.1016/j.sedgeo.2008.10.004.
[64] Rashid, F., Glover, P.W.J., Lorinczi, P., Collier, R., Lawrence, J., 2015. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. Journal of Petroleum Science and Engineering 133, 147-161. https://doi.org/10.1016/j.petrol.2015.05.009.
[65] Ruan Z., Yu B.S., Wang L.D., Pan Y.L., Tan G.H.,2013. Prediction of buried calcite dissolution in the Ordovician carbonate reservoir of the Tahe oilfield, NW china: Evidence from formation water. Geochemistry 73(4), 469-479. https://doi.org/10.1016/j.chemer.2013.03.004.
[66] Sharafi M., Ashuri M., Mahboubi A.,Moussavi-Harami, R., 2012. Stratigraphic application of Thalassinoides ichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld 21(3), 202-216. https://doi.org/10.1016/j.palwor.2012.06.001.
[67] Tarhan L.G.,2018. The Early Paleozoic development of bioturbation — Evolutionary and geobiological consequences. Earth-Science Reviews 178, 177-207. https://doi.org/10.1016/j.earscirev.2018.01.011.
[68] Tian F., Jin Q., Lu X.B., Lei Y.H., Zhang L.K., Zheng S.Q., Zhang H.F., Rong Y.S., Liu N.G.,2016. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe oilfield, Tarim Basin, western China. Marine and Petroleum Geology 69, 53-73. https://doi.org/10.1016/j.marpetgeo.2015.10.015.
[69] Tonkin N.S., McIlroy D., Meyer R., Moore-Turpin A., 2010. Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne d'Arc Basin, offshore Newfoundland, Canada. AAPG Bulletin 94(7), 1059-1078. https://doi.org/10.1306/12090909064.
[70] Valencia F.L., Laya J.C.,2020. Deep-burial dissolution in an Oligocene-Miocene giant carbonate reservoir (Perla Limestone), Gulf of Venezuela Basin: Implications on microporosity development. Marine and Petroleum Geology 113, 104144. https://doi.org/10.1016/j.marpetgeo.2019.104144.
[71] Warren J.,2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews 52(1-3), 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2.
[72] Wierzbicki R., Dravis J.J., Al-Aasm I., Harland N., 2006. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada. AAPG Bulletin 90(11), 1843-1861. https://doi.org/10.1306/03200605074.
[73] Wu J., Fan T.L., Gao Z.Q., Yin X.X., Fan X., Li C.C., Yu W.Y., Li C., Zhang C.J., Zhang J.H., Sun X.N.,2018. A conceptual model to investigate the impact of diagenesis and residual bitumen on the characteristics of Ordovician carbonate cap rock from Tarim Basin, China. Journal of Petroleum Science and Engineering 168, 226-245. https://doi.org/10.1016/j.petrol.2018.05.034.
[74] Yan X.B., Han Z.H., Li Y.H.,2002. Reservoir characteristics and formation mechanisms of the Ordovician carbonate pools in the Tahe oilfield. Geological Review 48(6), 619-626. https://doi.org/10.3321/j.issn:0371-5736.2002.06.019 (in Chinese with English abstract).
[75] Yang J.J., Huang S.J., Zhang W.Z., Huang Y.M., Liu G.X., Xiao L.P., 1995. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment.Acta Sedimentologica Sinica 13(4), 49-54 (in Chinese with English abstract).
[76] Ye N., Zhang S.N., Qing H.R., Li Y.T., Huang Q.Y., Liu D.,2019. Dolomitization and its impact on porosity development and preservation in the deeply burial Lower Ordovician carbonate rocks of Tarim Basin, NW China. Journal of Petroleum Science and Engineering 182, 106303. https://doi.org/10.1016/j.petrol.2019.106303.
[77] Zenger D.H.,1996. Dolomitization patterns in widespread “Bighorn Facies” (Upper Ordovician), Western Craton, USA. Carbonates and Evaporites 11(2), 219-225. https://doi.org/10.1007/BF03175640.
[78] Zhang X.F., Liu B., Cai Z.X., Hu W.X.,2010. Dolomitization and carbonate reservoir formation. Geological Science and Technology Information 29(3), 79-85. https://doi.org/10.3969/j.issn.1000-7849.2010.03.012 (in Chinese with English abstract).
[79] Zhang Y.D., Zhan R.B., Zhen Y.Y., Wang Z.H., Yuan W.W., Fang X., Ma X., Zhang J.P., 2019. Ordovician integrative stratigraphy and timescale of China.Science China Earth Sciences 62(1), 61-88.
[80] Zhu D.Y., Hu W.X., Zhang X.F., Jin Z.J.,2007. Characteristics of burial dissolution in the Ordovician limestone of Tahe oilfield. Acta Petrolei Sinica 28(5), 57-62. https://doi.org/10.3321/j.issn:0253-2697.2007.05.010 (in Chinese with English abstract). |