|
|
Geochemistry of cherts from the northern Jiangxi region, South China: Implication for paleoenvironment |
Guo-Liang Xiea,b,*, Gao-Jie Zhoua, Yu-Yong Suna, Yan-Ran Hua, Wei-Duo Haoc |
a School of Civil Engineering and Architecture, Tongling University, Tongling 244000, Anhui Province, China;
b State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
c Department of Geology, Northwest University, Xi'an 710069, Shaanxi Province, China |
|
|
Abstract The extensive bedded cherts deposited during the Ediacaran-Cambrian (E-C) transition period play a crucial role in understanding the geological evolution of this period, yet the origin of these cherts remains disputed. Here, we present new geochemical data for cherts of the Piyuancun (PYC) Formation deposited during the Late Ediacaran and the Hetang (HT) Formation deposited during the Early Cambrian in northern Jiangxi region, Lower Yangtze region, South China. The PYC cherts contain a small amount of monaxons sponge spicules and radiolarian fragments, while the HT cherts lack siliceous organism evidence. Major and trace element analysis, coupled with discriminant diagrams, indicate a possible shift in redox conditions of seawater during the E-C transition in the northern Jiangxi region. The shift suggests a change from weakly-moderately restricted euxinic conditions to strongly restricted euxinic conditions. Furthermore, the location of both cherts are distant from the source area of siliceous organisms. Fossil evidence, as well as the values of Fe/Ti and Fe/(Mn+Ti), Eu anomalies, Post-Archean Australian Shale (PAAS) normalized REE+Y patterns, and various discriminant diagrams, support the conclusion that the PYC and HT cherts originated primarily from direct seawater precipitation, with the PYC cherts exhibiting weak hydrothermal evidence. Upwelling contributes to the formation of HT cherts and organic matter (OM) accumulation. Ocean acidification, triggered by OM degradation and biodegradation processes during the E-C transition period, leads to the extensive silica precipitation and preservation. These results enhance our understanding of the geological processes during the E-C transition.
|
Received: 26 July 2023
|
Corresponding Authors:
* School of Civil Engineering and Architecture, Tongling University, Tongling 244000, Anhui Province, China. E-mail address: glxie1989@tlu.edu.cn (G.-L. Xie).
|
|
|
|
L. Ackerman, F. Poitrasson, T. Magna, L. Polák, J. Ďurišová, 2023a. Seawater silica cycling and chert formation at the Neoproterozoic–Cambrian transition: Insights from δ30Si and Ge/Si systematics of hydrothermal cherts from the Bohemian Massif. Chemical Geology, 634, Article 121598.
L. Ackerman, J. Žák, V. Kachlĺk, J. Pašava, K. Žák, A. Pack, F. Veselovský, L. Strnad, 2023b. The significance of cherts as markers of ocean plate stratigraphy and paleoenvironmental conditions: New insights from the Neoproterozoic–Cambrian Blovice accretionary wedge, Bohemian Massif. Geoscience Frontiers, 14, Article 101478.
T.J. Algeo, J.S. Liu, 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, Article 119549.
T.J. Algeo, T.W. Lyons, 2006. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, Article PA1016.
T.J. Algeo, H. Rowe, 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324, pp. 6-18.
T.J. Algeo, N. Tribovillard, 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268, pp. 211-225.
D.S. Alibo, Y. Nozaki, 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, pp. 363-372.
A.D. Anbar, Y. Duan, T.W. Lyons, G.L. Arnold, B. Kendall, R.A. Creaser, A.J. Kaufman, G.W. Gordon, C. Scott, J. Garvin, R. Buick, 2007. A whiff of oxygen before the Great Oxidation Event?. Science, 317, pp. 1903-1906.
M. Bau, P. Dulski, 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, pp. 37-55.
M. Bau, K. Schmidt, A. Koschinsky, J.R. Hein, A. Usui, 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381, pp. 1-9.
R. Bolhar, M.J.V. Kranendonk, B.S. Kamber, 2005. A trace element study of siderite jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton: Formation from hydrothermal fluids and shallow seawater. Precambrian Research, 137, pp. 93-114.
R. Chakrabarti, A.H. Knoll, S.B. Jacobsen, W.W. Fischer, 2012. Si isotope variability in Proterozoic cherts. Geochimica et Cosmochimica Acta, 91, pp. 187-201.
H.J. Chang, X.L. Chu, L.J. Feng, J. Huang, 2009. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China. Science in China - Series D: Earth Sciences, 52, pp. 807-822.
H.J. Chang, X.L. Chu, L.J. Feng, J. Huang, 2010. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55, pp. 3189-3196.
S. Chang, L. Zhang, S. Clausen, Q. Feng, 2020. Source of silica and silicification of the lowermost Cambrian Yanjiahe Formation in the three Gorges area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 548, Article 109697.
C. Chao, W.X. Hu, Q. Fu, J. Cao, X.L. Wang, S.P. Yao, 2016. Characterization of trace elements and carbon isotopes across the Ediacaran–Cambrian boundary in Anhui Province, South China: Implications for stratigraphy and paleoenvironment reconstruction. Journal of Asian Earth Sciences, 125, pp. 58-70.
C.T.A. Chen, W.L. Marshall, 1982. Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C. Geochimica et Cosmochimica Acta, 46, pp. 279-287.
X. Chen, H.-F. Ling, D. Vance, G.A. Shields-Zhou, M. Zhu, S.W. Poulton, L.M. Och, S.-Y. Jiang, D. Li, L. Cremonese, C. Archer, 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6, p. 7142.
J.H. Choi, Y. Hariya, 1992. Geochemistry and depositional environment of Mn oxide deposits in the Tokora Belt, northeastern Hokkaido, Japan. Economic Geology, 87, pp. 1265-1274.
T. Deng, Y. Li, X.M. Hu, 2022. Origin of Carnian Ma’angtang cherts, northwestern Sichuan Basin, South China: Field, petrographic, and geochemical perspectives. Journal of Asian Earth Sciences, 228, Article 105143.
M.S. Dodd, W. Shi, C. Li, Z.H. Zhang, M. Cheng, H.D. Gu, D.S. Hardisty, S.J. Loyd, M.W. Wallace, A.,V. Hood, K. Lamothe, B.J.W. Mills, S.W. Poulton, T.W. Lyons, 2023. Uncovering the Ediacaran phosphorus cycle. Nature, 618, pp. 974-980.
L. Dong, B. Shen, C.T.A. Lee, X.E. Shu, Y. Peng, Y.L. Sun, Z.H. Tang, H. Rong, X.H. Lang, H.R. Ma, F. Yang, W. Guo, 2015. Germanium/silicon of the Ediacaran–Cambrian Laobao cherts: Implications for the bedded chert formation and paleoenvironment interpretations. Geochemistry, Geophysics, Geosystems, 16, pp. 751-763.
E. Douville, P. Bienvenu, J.L. Charlou, J.P. Donval, Y. Fouquet, P. Appriou, T. Gamo, 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63, pp. 627-643.
H.F. Fan, H.J. Wen, X.K. Zhu, R.Z. Hu, S.H. Tian, 2013. Hydrothermal activity during Ediacaran–Cambrian transition: Silicon isotopic evidence. Precambrian Research, 224, pp. 23-35.
E. Flügel, 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. (second ed.), Springer, New York, pp. 1-984.
A.B. Frank, R.M. Klaebe, L.G. Xu, R. Frei, 2019. Redox fluctuations during the Ediacaran–Cambrian transition, Nanhua Basin, South China: Insights from Cr isotope and REE+Y data. Chemical Geology, 525, pp. 321-333.
P. Gao, Z.L. He, G.G. Lash, S.J. Li, X.M. Xiao, Y.Q. Han, R.Q. Zhang, 2020. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern Paleo-Tethys margin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 551, Article 109740.
P. Gao, Z.L. He, G.G. Lash, Q. Zhou, X.M. Xiao, 2021. Controls on silica enrichment of Lower Cambrian organic-rich shale deposits. Marine and Petroleum Geology, 130, Article 105126.
C.R. German, B.P. Holliday, H. Elderfield, 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55, pp. 3553-3558.
C.R. German, T. Masuzawa, M.J. Greaves, H. Elderfield, J.M. Edmond, 1995. Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography. Geochimica et Cosmochimica Acta, 59 (8), pp. 1551-1558.
T. Goldberg, H. Strauss, Q. Guo, C. Liu, 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, pp. 175-193.
J.P. Grotzinger, S.A. Bowring, B.Z. Saylor, A.J. Kaufman, 1995. Biostratigraphic and geochronlogical constraints on early animal evolution. Science, 270, pp. 598-604.
C.G. Guan, C.M. Zhou, W. Wang, B. Wan, X.L. Yuan, Z. Chen, 2014. Fluctuation of shelf basin redox conditions in the early Ediacaran: Evidence from Lantian Formation black shales in South China. Precambrian Research, 245, pp. 1-12.
J.F. Guo, Y. Li, G.X. Li, 2013. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25, pp. 999-1007.
T.C. He, H.F. Lin, Y.Q. Chen, D. Li, A.H. Yang, D. Wang, H.B. Wu, 2013. Geochemical characteristics and origin of Ediacaran Piyuancun Chert in the Lantian Section, Xiuning, southern Anhui Province. Geological Journal of China Universities, 19, pp. 620-633.
M. Hicks, S.M. Rowland, 2009. Early Cambrian microbial reefs, archaeocyathan inter-reef communities, and associated facies of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, pp. 137-153.
C.H. Hou, C.X. Feng, S. Liu, H.B. Zhao, 2022. Distribution and pollution assessment of selenium and heavy metals in soil: Ziyang, Shaanxi Province as an example. Journal of Northwest University, 52 (5), pp. 878-890.
J. Huang, J. Liu, Y.N. Zhang, H.J. Chang, Y.N. Shen, F. Huang, L.P. Qin, 2018. Cr isotopic composition of the Laobao cherts during the Ediacaran–Cambrian transition in South China. Chemical Geology, 482, pp. 121-130.
G.Q. Jiang, A.J. Kaufman, N. Christie-Blick, S.H. Zhang, H.C. Wu, 2007. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean delta δ13C gradient.. Earth and Planetary Science Letters, 261, pp. 303-320.
S.Y. Jiang, D.H. Pi, C. Heubeck, H. Frimmel, Y.P. Liu, H.L. Deng, H.F. Ling, J.H. Yang, 2009. Early Cambrian ocean anoxia in South China. Nature, 459, p. 7248.
D.T. Johnston, S.W. Poulton, T. Goldberg, V.N. Sergeev, V. Podkovyrov, N.G. Vorob’eva, A. Bekker, A.H. Knoll, 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters, 335, pp. 25-35.
C. Li, G.D. Love, T.W. Lyons, D.A. Fike, A.L. Sessions, X.L. Chu, 2010. A stratified redox model for the Ediacaran ocean. Science, 328, pp. 80-83.
C.Q. Li, L. Dong, H.R. Ma, H. Liu, C. Li, H.X. Pei, 2022. Formation of the massive bedded chert and coupled silicon and iron cycles during the Ediacaran–Cambrian transition. Earth and Planetary Science Letters, 594, Article 117721.
W.P. Li, Y.Y. Zhao, M.Y. Zhao, X.P. Zha, Y.F. Zheng, 2019. Enhanced weathering as a trigger for the rise of atmospheric O2 level from the Late Ediacaran to the Early Cambrian. Scientific Reports, 9, p. 1063.
Y.T. Liang, X. Tang, J.C. Zhang, Y. Liu, Y. Zhang, K. Yuan, T. Lin, J.H. Ding, Y. Wang, 2022. Origin of Lower Carboniferous cherts in southern Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 590, Article 110863.
H.F. Lin, X. Chen, D. Li, D. Wang, G.A. Shields-Zhou, M.Y. Zhu, 2013. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 225, pp. 110-127.
Y. Liu, Y. Jing, W. Zhao, 2023. Distribution of rare earth elements and implication for Ce anomalies in the clay-sized minerals of deep-sea sediment, Western Pacific Ocean. Applied Clay Science, http://doi.org/10.1016/j.clay.2023.106876.
R.G. Maliva, A.H. Knoll, B. Simonson, 2005. Secular change in the Precambrian silica cycle: Insights from chert petrology. GSA Bulletin, 117, pp. 835-845.
A. Mazumdar, D.M. Banerjee, 1998. Siliceous sponge spicules in the Early Cambrian chert–phosphorite member of the Lower Tal Formation, Krol belt, Lesser Himalaya. Geology, 26 (10), pp. 899-902.
S.M. McLennan, 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, Article 2000GC000109.
R.W. Murray, 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90, pp. 213-232.
Y. Nozaki, J. Zhang, H. Amakawa, 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148, pp. 329-340.
K. Ramseyer, J.E. Amthor, A. Matter, T. Pettke, M. Wille, A.E. Fallick, 2013. Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of Oman. Marine and Petroleum Geology, 39, pp. 187-197.
D.J. Ross, R.M. Bustin, 2009. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, pp. 1-19.
S. Schröder, J.P. Grotzinger, 2007. Evidence for anoxia at the Ediacaran–Cambrian boundary: The record of redox sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society, 164, pp. 175-187.
J.F. Slack, T. Grenne, A. Bekker, O.J. Rouxel, P.A. Lindberg, 2007. Suboxic deep seawater in the Late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255, pp. 243-256.
T.O. Soyol-Erdene, Y. Huh, 2012. Dissolved platinum in major rivers of East Asia: Implications for the oceanic budget. Geochemistry, Geophysics, Geosystems, 13, Article Q06009.
M. Steiner, G. Li, Y. Qian, M. Zhu, B.D. Erdtmann, 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254, pp. 67-99.
R. Sugisaki, K. Yamamoto, M. Adachi, 1982. Triassic bedded cherts in central Japan are not pelagic. Nature, 298, pp. 644-647.
M. Tatzel, F. Blanckenburg, M. Oelze, J. Bouchez, D. Hippler, 2017. Late Neoproterozoic seawater oxygenation by siliceous sponges. Nature Communications, 8, pp. 1-10.
R. Tostevin, M.O. Clarkson, S. Gangl, G.A. Shield, R.A. Wood, F. Bowyer, A.M. Penny, C.H. Stirling, 2019. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506, pp. 104-112.
R. Tostevin, G.A. Shields, G.M. Tarbuck, T. He, M.O. Clarkson, R.A. Wood, 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, pp. 146-162.
J.R. Toth, 1980. Deposition of submarine crusts rich in manganese and iron. Geological Society of America Bulletin, 91, pp. 44-54.
N. Tribovillard, T. Algeo, T. Lyons, A. Riboulleau, 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, pp. 12-32.
D. Wang, H.F. Ling, U. Struck, X.K. Zhu, M.Y. Zhu, T.C. He, B. Yang, A. Gamper, G.A. Shields, 2018. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nature Communications, 9, pp. 1-8.
J. Wang, Z.X. Li, 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122, pp. 141-158.
Z.H. Wang, X.M. Xie, Z.G. Wen, 2022. Formation conditions of Ediacaran–Cambrian cherts in South China: Implications for marine redox conditions and paleoecology. Precambrian Research, 383, Article 106867.
S.C. Wei, Q.F. Chen, Y. Fu, T. Cui, H.P. Liang, Z.H. Ge, P. Zhang, Y. Zhang, 2018. Origin of cherts during the Ediacaran–Cambrian transition in Hunan and Guizhou Provinces, China: Evidences from REE and Ge/Si. Acta Scientiarum Naturalium Universitatis Pekinensis, 54, pp. 1010-1020.
H.J. Wen, H.F. Fan, S.H. Tian, Q.L. Wang, R.Z. Hu, 2016. The formation conditions of the Early Ediacaran cherts, South China. Chemical Geology, 430, pp. 45-69.
R. Wood, A.G. Liu, F. Bowyer, P.R. Wilby, F.S. Dunn, C.G. Kenchington, J.F. Hoyal Cuthill, E.G. Mitchell, A. Penny, 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology Evolution, 3, pp. 528-538.
G.L. Xie, Y.L. Shen, S.G. Liu, W.D. Hao, 2018. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Marine and Petroleum Geology, 92, pp. 20-36.
K. Yamamoto, 1987. Geochemical characteristics and depositional environments of cherts and associated rocks from the Franciscan and Shimanto Terranes. Sedimentary Geology, 52, pp. 65-108.
H. Yang, L.X. Yang, M.Z. Zhou, 2022. Expanded deepwater euxinia recorded in the Ediacaran–Cambrian boundary interval in South China. Journal of Asian Earth Sciences, 230, Article 105192.
M.G. Yang, F.J. Wu, Z.R. Song, S.J. Lv, 2015. North Jiangxi: A geological window of South China. Acta Geologica Sinica, 89, pp. 222-233.
Y. Ye, P.J. Frings, F. Von-Blanckenburg, Q.L. Feng, 2021. Silicon isotopes reveal a decline in oceanic dissolved silicon driven by biosilicification: A prerequisite for the Cambrian Explosion?. Earth and Planetary Science Letters, 566, Article 116959.
Y.Y. Yuan, C.F. Cai, T.K. Wang, L. Xiang, L.Q. Jia, Y. Chen, 2014. Redox condition during Ediacaran–Cambrian transition in the Lower Yangtze deep water basin, South China: Constraints from iron speciation and δ13Corg in the Diben section, Zhejiang. Chinese Science Bulletin, 59, pp. 3638-3649.
H.J. Zhang, H.F. Fan, H.J. Wen, X.K. Zhu, S.H. Tian, 2020. Oceanic chemistry recorded by cherts during the Early Cambrian Explosion, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 558, Article 109961.
Y. Zhang, Q. Feng, Y. Nakamura, N. Suzuki, 2021a. Microfossils from the Liuchapo Formation: Possible oldest radiolarians from deep-water chert and phylogenetic analysis. Precambrian Research, 362, Article 106312.
Y.G. Zhang, M. Pagani, J. Henderiks, H.J. Ren, 2017. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth and Planetary Science Letters, 467, pp. 1-9.
Z.Y. Zhang, Y.H. Jiang, H.C. Niu, J.Q. Xing, S. Yan, A. Li, Q. Weng, X.C. Zhao, 2021b. Enrichment of rare earth elements in the Early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geology Reviews, 138, Article 104342.
G.Y. Zhao, Q. Deng, H.Z. Zhang, H.Z. Wang, B. Cheng, Z.W. Liao, 2023. Trace elements and stable isotopic geochemistry of two sedimentary sections in the Lower Cambrian strata from the Tarim Basin, northwest China: Implications for silicification and biological evolution. Marine and Petroleum Geology, 147, Article 105991.
G.L. Zhao, C.L. Zhao, D.A. Wang, R.W. Li, J.Z. Wei, 2001. Origins and environment types of cherts in western Zhejiang and southern Anhui from Late Sinian to Early Cambrian. Geoscience, 15, pp. 370-376.
Y.Y. Zhao, M.Y. Zhao, S.Z. Li, 2018. Evidences of hydrothermal fluids recorded in microfacies of the Ediacaran cap dolostone: Geochemical implications in South China. Precambrian Research, 306, pp. 1-21.
X.Q. Zhou, D.Z. Chen, L.Y. Zhang, D.J. Tang, C. Guo, 2021. Silica-rich seawater in the Early Cambrian: Sedimentological evidence from bedded cherts. Terra Nova, 33, pp. 494-501.
B. Zhu, T. Yang, J. Wang, X. Chen, W.Q. Pan, Y.Q. Chen, 2022. Multiple controls on the paleoenvironment of the Early Cambrian black shale–chert in the Northwest Tarim Basin, NW China: Trace element, iron speciation and Mo isotopic evidence. Marine and Petroleum Geology, 136, Article 105434. |
|
|
|