|
|
Magnetostratigraphy and paleoenvironmental record of late Cenozoic sediments in the Taiyuan Basin, North China |
Zhi-Qiang Fenga,b,*, Qian Lia, Wei Hana, Kun-Yuan Maa, Yong-Jiang Liuc,d, Rong-Zhu Weib, Yan-Wei Dub, Yong Leie, Guang-Hui Lif |
a College of Geoscience and Geomatics Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China;
b Shanxi Institute of Geological Survey, Taiyuan 030006, Shanxi Province, China;
c Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geoscience and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong Province, China;
d Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province, China;
e College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China;
f Department of Information Engineering, Shanxi University, Taiyuan 030013, Shanxi Province, China |
|
|
Abstract The Taiyuan Basin is of importance for intraplate tectonic deformation in North China and contains Cenozoic strata with a maximum thickness of 3800 m. A ~853.5-m-deep borehole (ZK01) with an overall core recovery rate of 85.09% was drilled at Yuci (37○35037ʺN, 112○39047ʺE) in the central Taiyuan Basin, to obtain high-resolution records of paleomagnetism, paleoclimatic and paleoenvironmental conditions, and depositional environment of the sediments. The obtained magnetic polarity sequence consists of 13 normal and 12 reverse zones, which correspond to C1n-C4An.2n of the geomagnetic polarity time scale. Magnetostratigraphic data show that the evolution of ZK01 core covers the interval from 8.1 Ma to the present, and the bottoms of Pliocene, Quaternary, and Middle Pleistocene were identified in Taiyuan Basin, with a sedimentary accumulation rate ranging from 62.5 m/Ma to 175.9 m/Ma. Geochemical data reveal that the source rocks in the study area underwent intense weathering and the sediments mainly formed in a semi-arid and oxygen-rich conditions. In addition, paleoclimatic changes occurred at ~7 Ma, 3.8 Ma, and 1.7 Ma, which can be closely related to the tectonic uplift of the Loess Plateau and Tibetan Plateau, as well as the variations in the Asian monsoon and associated regional and global climatic change.
|
Received: 30 May 2023
|
Corresponding Authors:
* College of Geoscience and Geomatics Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China. E-mail addresses: fengzhiqiang@tyut.edu.cn (Z.-Q. Feng), 2669452052@qq.com (Q. Li), 1669100172@qq.com (W. Han), cug-mky@qq.com(K.-Y. Ma), liuyongjiang@ouc.edu.cn (Y.-J. Liu), jzweirongzhu@126.com (R.-Z. Wei), 123948209@qq.com (Y.-W. Du), leiyongdida@163.com (Y.Lei), ligh1986@sxu.edu.cn (G.-H. Li).
|
|
|
|
Z.S. An, 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19 (1), pp. 171-187, http://doi.org/10.1016/S0277-3791(99)00060-8.
Z.H. An, Y.S. Huang, W.G. Liu, Z.T. Guo, S. Clemens, L. Li, W. Prell, Y.F. Ning, Y.J. Cai, W.J. Zhou, B.H. Lin, Q.L. Zhang, Y.N. Cao, X.K. Qiang, H. Chang, Z.K. Wu, 2005. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology, 33 (9), pp. 705-708, http://doi.org/10.1130/G21423.1.
Z.S. An, P.Z. Zhang, E.C. Wang, S.M. Wang, X.K. Qiang, L. Li, Y.G. Song, H. Chang, X.D. Liu, W.J. Zhou, W.G. Liu, J.J. Cao, X.Q. Li, J. Shen, Y. Liu, L. Ai, 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene. Quaternary Sciences, 26 (5), pp. 678-693, http://doi.org/10.3321/j.issn:1001-7410.2006.05.002(in Chinese with English abstract).
H. Ao, A.P. Roberts, M.J. Dekkers, X.D. Liu, E.J. Rohling, Z.G. Shi, Z.S. An, X. Zhao, 2016. Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth. Earth and Planetary Science Letters, 444, pp. 75-87, http://doi.org/10.1016/j.epsl.2016.03.028.
P. Arason, S. Levi, 2010. Maximum likelihood solution for inclination-only data in paleomagnetism. Geophysical Journal International, 182 (2), pp. 753-771, http://doi.org/10.1111/j.1365-246X.2010.04671.x.
J.S. Armstrong-Altrin, Y.I. Lee, S.P. Verma, S. Ramasamy, 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74 (2), pp. 285-297, http://doi.org/10.1306/082803740285.
Y.J. Bai, X.P. Wei, F. Qin, Y.M. Li, J.F. Li, P.S. Ranhotra, Y.F. Wang, 2016. Research highlights of the vegetation, climate and atmospheric CO2 in Yushe Basin, Shanxi, North China during the Plio-Pleistocene transition. Bulletin of Botany, 51 (2), pp. 257-264, http://doi.org/10.11983/CBB15086(in Chinese with English abstract).
Y.P. Bi, E.C. Pang, Y.S. Sun, Y.L. Liu, Q.M. Bian, S.Z. Liu, Z.S. Shen, J.G. Xiong, H.D. Zhang, Q.Z. Hao, C.L. Deng, 2022. Magnetostratigraphy of the fluvio-lacustrine sequence of core DY-1 in the Datong Basin and its implications for the evolution of the Shanxi Rift System in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 599, Article 111063, http://doi.org/10.1016/j.palaeo.2022.111063.
S.C. Cande, D.V. Kent, 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100 (B4), pp. 6093-6095, http://doi.org/10.1029/94JB03098.
J.X. Cao, N.L. Wang, H.T. Cui, Z.J. Cui, J.C. Cheng, X.W. Liu, 1980. A preliminary study on the late Cenozoic stratigraphy and sedimentary environment in the Wuxiang area of Yushe, Taigu, Shanxi. Quaternary Sciences, 5 (1), pp. 77-86(in Chinese).
X.R. Cheng, Q.H. Zhao, J.L. Wang, Z.M. Jain, P.F. Xia, B.Q. Huang, D.Y. Fang, J. Xu, Z. Zhou, P.X. Wang, 2006. Data report: Stable isotopes from sites 1147 and 1148. Proceedings of the Ocean Drilling Program, Scientific Results, 184, pp. 1-12.
G.Q. Chu, Q. Sun, Q.Z. Zhu, Y.B. Shan, W.Y. Shang, Y. Ling, Y.L. Su, M.M. Xie, X.S. Wang, J.Q. Liu, 2017. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation. Quaternary Science Reviews, 177, pp. 120-129, http://doi.org/10.1016/j.quascirev.2017.10.014.
C.L. Deng, Q.S. Liu, Y.X. Pan, R.X. Zhu, 2007. Environmental magnetism of Chinese loess-paleosol sequences. Quaternary Sciences, 27 (2), pp. 193-209, http://doi.org/10.3321/j.issn:1001-7410.2007.02.005(in Chinese with English abstract).
T. Deng, S.K. Hou, S.Q. Wang, 2019. Neogene integrative stratigraphy and timescale of China. Science China Earth Sciences, 62 (1), pp. 310-323.
Y.H. Ding, J.C.L. Chan, 2005. The East Asian summer monsoon: An overview. Meteorology and Atmospheric Physics, 89 (1), pp. 117-142, http://doi.org/10.1007/s00703-005-0125-z.
L.L. Dong, Z.M. Yang, M.C. Song, 2023. Prolonged mantle modification beneath the North China Craton: Evidence from contrasting mafic dykes in Jiaodong Peninsula. Journal of Earth Sciences, 34 (4), pp. 1150-1164, http://doi.org/10.1007/s12583-022-1737-7.
E.N. Effoudou-Priso, V.L. Onana, L. Boubakar, V.K.K. Beyala, G.E. Ekodeck, 2014. Relationships between major and trace elements during weathering processes in a sedimentary context: Implications for the nature of source rocks in Douala, Littoral Cameroon. Geochemistry, 74 (4), pp. 765-781, http://doi.org/10.1016/j.chemer.2014.05.003.
X.M. Fang, Y.H. Fang, J.B. Zan, W.L. Zhang, C.H. Song, E. Appel, Q.Q. Meng, Y.F. Miao, S. Dai, Y. Lu, T. Zhang, 2019. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Science Reviews, 190, pp. 460-485, http://doi.org/10.1016/j.earscirev.2019.01.021.
C.M. Fedo, H.W. Nesbitt, G.M. Young, 1995. Unraveling the effects of potassium metasomatism in sedimentary-rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23 (10), pp. 921-924, http://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
Z.Q. Feng, M.J. Shen, Y.J. Liu, R.Z. Wei, Q. Wang, Y. Bai, S.Q. Hao, Y.W. Du, 2023. Major and trace elements geochemical characteristics and paleoenvironmental implications of borehole ZK01 in Taiyuan Basin of the North China. Quaternary Sciences, 43 (1), pp. 1-19, http://doi.org/10.11928/j.issn.1001-7410.2023.01.01(in Chinese with English abstract).
C. France-Lanord, L. Derry, A. Michard, 1993. Evolution of the Himalaya since Miocene time: Isotopic and sedimentological evidence from the Bengal Fan. Geological Society, London, Special Publications, 74 (1), pp. 603-621.
F. Gao, Q.M. Xu, G.B. Yuan, J.L. Yang, Y.L. Fan, W.D. Liu, J.J. Zhao, 2017. Sedimentary environment evolution of borehole TZ02 in the northern Bohai Bay during late Cenozoic. Quaternary Sciences, 37 (3), pp. 667-678, http://doi.org/10.11928/j.issn.1001-7410.2017.03.21(in Chinese with English abstract).
J.Y. Ge, Y. Dai, Z.S. Zhang, D.A. Zhao, Q. Li, Y. Zhang, L. Yi, H.B. Wu, F. Oldfield, Z.T. Guo, 2013. Major changes in East Asian climate in the mid-Pliocene: Triggered by the uplift of the Tibetan Plateau or global cooling?. Journal of Asian Earth Sciences, 69, pp. 48-59, http://doi.org/10.1016/j.jseaes.2012.10.009.
Z.T. Guo, W.F. Ruddiman, Q.Z. Hao, H.B. Wu, Y.S. Qiao, R.X. Zhu, S.Z. Peng, J.J. Wei, B.Y. Yuan, T.S. Liu, 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416 (6877), pp. 159-163, http://doi.org/10.1038/416159a.
A.K. Gupta, A. Yuvaraja, M. Prakasam, S.C. Clemens, A. Velu, 2015. Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, pp. 160-167, http://doi.org/10.1016/j.palaeo.2015.08.006.
J.R. Hatch, J.S. Leventhal, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99 (1–3), pp. 65-82, http://doi.org/10.1016/0009-2541(92)90031-Y.
Q. Hou, C.L. Mou, Q.Y. Wang, Z.Y. Tan, X.Y. Ge, X.P. Wang, 2018. Geochemistry of sandstones from the Silurian Hanxia Formation, North Qilian Belt, China: Implication for provenance, weathering and tectonic setting. Geochemistry International, 56 (4), pp. 362-377, http://doi.org/10.1134/S0016702918040092.
Z.B. Hu, 2012. The Study on the Drainage Evolution and Fluvial Terraces in the Jinshaan Yellow River during Late Cenozoic [Dissertation]. Lanzhou University, Lanzhou, pp. 1-177(in Chinese).
X.M. Hu, J.L. Fu, Z.Z. Ma, J.C. Yang, 2002. The significance of the Hongshan Quaternary section in Taiyuan Basin, Shanxi. Journal of Stratigraphy, 26 (3), pp. 226-229, http://doi.org/10.3969/j.issn.0253-4959.2002.03.013(in Chinese with English abstract).
B.Y. Huang, S.Y. Guo, 1991. Late Cenozoic Stratigraphy and Paleontological Groups in Central and Southern Shanxi. Science Press, Beijing, pp. 1-218(in Chinese).
J.Q. Jiang, D.W. Mo, J.Q. Lv, Y.N. Liao, P. Lu, X.L. Ren, 2016. Holocene geomorphic evolution of Taiyuan Basin in Shanxi Province and its influence on ancient human settlement distribution. Journal of Palaeogeography (Chinese Edition), 18 (5), pp. 895-904, http://doi.org/10.7605/gdlxb.2016.05.068(in Chinese with English abstract).
M.J. Johnsson, 1993. The system controlling the composition of clastic sediments. GSA Special Papers, 284, pp. 1-19, http://doi.org/10.1130/SPE284-p1.
B. Jones, D.A.C. Manning, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111 (1–4), pp. 111-129, http://doi.org/10.1016/0009-2541(94)90085-X.
A. Kaakinen, 2005. A Long Terrestrial Sequence in Lantian — A Window into the Late Neogene Palaeoenvironments of Northern China [Dissertation]. University of Helsinki, Helsinki, pp. 1-49.
J.L. Kirschvink, 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62 (3), pp. 699-718, http://doi.org/10.1111/j.1365-246X.1980.tb02601.x.
H.C. Larsen, A.D. Saunders, P.D. Clift, J. Beget, W. Wei, S. Spezzaferri, 1994. Seven million years of glaciation in Greenland. Science, 264 (5161), pp. 952-955, http://doi.org/10.1126/science.264.5161.952.
J.J. Li, X.M. Fang, 1998. Study on uplift and environmental change of the Qinghai–Tibet Plateau. Chinese Science Bulletin, 43 (15), pp. 1569-1574(in Chinese).
J.J. Li, X.M. Fang, H.Z. Ma, J.J. Zhu, B.T. Pan, H.L. Chen, 1996. Geomorphological evolution of the upper reaches of Yellow River and the uplift of Qinghai–Tibet Plateau during late Cenozoic. Science in China (Series D: Earth Sciences, 26 (4), pp. 316-322(in Chinese).
J.J. Li, X.M. Fang, B.T. Pan, Z.J. Zhao, Y.G. Song, 2001. Intensive uplift of Qinghai–Tibet Plateau during the late Cenozoic and its influence on surrounding environment. Quaternary Sciences, 21 (5), pp. 381-391, http://doi.org/10.3321/j.issn:1001-7410.2001.05.001(in Chinese).
J. Li, J.C. Tian, X. Zhang, Q.S. Liang, M.H. Peng, 2022. Geochemical characteristics and the constraints on paleoenvironment, provenance, and tectonic setting of Precambrian Xifangshan Formation in the northwestern Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 208, Article 109553, http://doi.org/10.1016/j.petrol.2021.109553.
Y.M. Li, D. Wu, T. Wang, L. Chen, C.B. Zhang, S.L. Guo, 2023. Late Holocene temperature and precipitation variations in an alpine region of the northeastern Tibetan Plateau and their response to global climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 615, Article 111442, http://doi.org/10.1016/j.palaeo.2023.111442.
X.D. Liu, 2013. Effects of Qinghai-Tibetan Plateau uplift on the evolution of Asian monsoon-drought environment. Chinese Science Bulletin, 58 (28), pp. 2906-2919(in Chinese).
Y.M. Liu, 2017. Magnetostratigraphy and origin of Neogene conglomerate in Hequ, Shanxi Province. Quaternary Sciences, 37 (3), pp. 597-611, http://doi.org/10.11928/j.issn.1001-7410.2017.03.15(in Chinese with English abstract).
Y.J. Liu, 2021. Constraints of the Upper Permian–Lower Triassic Detrital Zircon Chronology on the Tectonic Evolution of the Provenance Area in the Central North China Craton [Dissertation]. Taiyuan University of Technology, Taiyuan, pp. 1-80(in Chinese).
J.F. Liu, Z.T. Guo, Q.Z. Hao, S.Z. Peng, Y.S. Qiao, B. Sun, J.Y. Ge, 2005. Magnetostratigraphy of the Miziwan Miocene eolian deposits in Qin'an County (Gansu Province). Quaternary Sciences, 25 (4), pp. 503-509, http://doi.org/10.3321/j.issn:1001-7410.2005.04.014(in Chinese with English abstract).
Y.M. Liu, Y.L. Li, H.H. Lu, S.P. Si, H.Z. Zhao, 2007. Preliminary study of alluvial pebbles on high terraces of the Yellow River from Baode to Kehu in Shanxi-Shaanxi Gorge. Acta Scientiarum Naturalium Universitatis Pekinensis, 43 (6), pp. 808-815, http://doi.org/10.3321/j.issn:0479-8023.2007.06.013(in Chinese with English abstract).
H.Y. Lu, Z.T. Guo, 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Science China Earth Sciences, 57 (1), pp. 70-79, http://doi.org/10.1007/s11430-013-4790-3.
Q.X. Luo, Y.L. Li, X. Hu, A.L. Guo, Q.R. Liu, S.R. Jiang, 2022. Constraints on the Late Quaternary dextral strike-slip rate of the western segment of the North Liulengshan Fault in the northern Shanxi Graben System. Quaternary Sciences, 42 (3), pp. 717-731, http://doi.org/10.11928/j.issn.1001-7410.2022.03.08(in Chinese with English abstract).
Y.Z. Ma, F.L. Wu, X.M. Fang, J.J. Li, Z.S. An, W. Wang, 2005. Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma. Chinese Science Bulletin, 50 (19), pp. 2234-2243, http://doi.org/10.1007/BF03182675.
S.M. McLennan, S. Hemming, D.K. McDaniel, G.N. Hanson, 1993. Geochemical approaches to sedimentation, provenance, and tectonics. GSA Special Papers, 284, pp. 21-40, http://doi.org/10.1130/SPE284-p21.
L.C. Meng, F. Wu, S.J. Ma, 2013. Study on the formation mechanism of Shanxi fault basin. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 34 (5), pp. 72-76, http://doi.org/10.3969/j.issn.1002-5634.2013.05.019(in Chinese with English abstract).
W.D. Miao, S.J. Li, J.S. Fen, L. Gao, J. E, 2016. Stratigraphic division of NB5 core in the Yangtze delta area and its environmental change information. Geology in China, 43 (6), pp. 2022-2035, http://doi.org/10.12029/gc20160613(in Chinese with English abstract).
P. Molnar, 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica, 8 (1), p. 232.
H.W. Nesbitt, G.M. Young, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885), pp. 715-717, http://doi.org/10.1038/299715a0.
L.M. Ngo Bidjeck Bondje, A.S. Ipan, R.K. Ngena Tetsa, E.P. Binam Mandeng, L.D. Bitom, 2019. Major and trace elements behaviour in two weathering profiles developed on gabbroic rocks in Meka'a and Abiete (south Cameroon, central Africa). Journal of African Earth Sciences, 151, pp. 241-254, http://doi.org/10.1016/j.jafrearsci.2018.12.022.
Q. Ni, 2008. Talking about the geological structure of Taiyuan Basin and its evolution. Sci-Tech Information Development and Economy, 18 (29), pp. 116-117, http://doi.org/10.3969/j.issn.1005-6033.2008.29.066(in Chinese with English abstract).
J.S. Nie, Y.G. Song, J.W. King, R. Zhang, X.M. Fang, 2013. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ∼4.5–2.6 Ma. Quaternary Research, 79 (3), pp. 465-470, http://doi.org/10.1016/j.yqres.2013.01.002.
G.H. Niu, X.Z. Li, Y.T. Zhao, F. Yang, S.C. Li, Z. Wan, 2021. Magnetostratigraphy of a drilling core from the Baiyanghe alluvial fan at the western margin of the Junggar Basin, NW China and its paleoenvironmental significance. Quaternary International, 589, pp. 1-11, http://doi.org/10.1016/j.quaint.2021.02.016.
N.D. Opdyke, J.E. Channell, 1996. Magnetic Stratigraphy. Academic Press, San Diego, California (1996).
A.C. Ravelo, D.H. Andreasen, M. Lyle, A. Olivarez Lyle, M.W. Wara, 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429 (6989), pp. 263-267, http://doi.org/10.1038/nature02567.
D.K. Rea, H. Snoeckx, L.H. Joseph, 1998. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13 (3), pp. 215-224, http://doi.org/10.1029/98PA00123.
X.P. Ren, 2021. Late Cenozoic Paleoclimate and Chemical Weathering Research in the Qaidam Basin [Dissertation]. Lanzhou University, Lanzhou, pp. 1-132(in Chinese).
Shanxi Bureau of Geology and Mineral Resources, 1989. Regional Geology of Shanxi Province. Geology Press, Beijing, pp. 315-340(in Chinese).
Shanxi Bureau of Geology and Mineral Resources, 1997. Rock and Stratigraphy of Shanxi Province. China University of Geosciences Press, Wuhan, pp. 275-318(in Chinese).
X.Y. Shen, S.M. Wan, C. Colin, R. Tada, X.F. Shi, W.Q. Pei, Y. Tan, X.J. Jiang, A.C. Li, 2018. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary. Earth and Planetary Science Letters, 502, pp. 74-83, http://doi.org/10.1016/j.epsl.2018.08.056.
P.C. Sun, 2013. Environmental Dynamics of Organic Matter Enrichment in Upper Cretaceous Oil-Bearing Shale Series in the Southeastern Songliao Basin [Dissertation]. Jilin University, Jilin, pp. 1-203(in Chinese).
J.M. Sun, Z.Q. Zhang, 2008. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global and Planetary Change, 64 (1–2), pp. 53-68, http://doi.org/10.1016/j.gloplacha.2008.09.001.
J.M. Sun, Q.H. Xu, W.M. Liu, Z.Q. Zhang, L. Xue, P. Zhao, 2014. Palynological evidence for the latest Oligocene−early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, pp. 21-30, http://doi.org/10.1016/j.palaeo.2014.02.004.
J.M. Sun, B.F. Windley, Z.L. Zhang, B.H. Fu, S.H. Li, 2016. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene. Journal of Asian Earth Sciences, 116, pp. 222-231, http://doi.org/10.1016/j.jseaes.2015.11.020.
L.J. Suttner, P.K. Dutta, 1986. Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Petrology, 56 (3), pp. 329-345, http://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.
S.R. Taylor, S.M. McLennan, 1985. The Continental Crust: Its composition and evolution. Blackwell Scientific Publications, Palo Alto, California, pp. 1-312.
J. Tian, H.T. Xin, X.J. Teng, M. Li, Q.A. Liao, Y. Zhang, B.F. Ren, 2023. Petrogenesis and tectonic implications of the Late Silurian–Early Devonian bimodal intrusive rocks in the central Beishan orogenic belt, NW China: Constraints by petrology, geochemistry and Hf isotope. Journal of Earth Sciences, 34 (2), pp. 431-443, http://doi.org/10.1007/s12583-020-1078-3.
R.G. Walker, 1984. Facies Models. (second ed.), Geological Association of Canada Publication, Canada (1984).
A.D. Wang, 2012. Petrologic Geochemistry and Geochronology of the Precambrian Metamorphic Basement Rocks and Deep-Seated Xenoliths at the Southeastern Margin of the North China Craton [Dissertation]. University of Science and Technology of China, Hefei, pp. 1-180(in Chinese).
N.L. Wang, J.C. Yang, Z.C. Xia, D.W. Mo, Y.L. Li, M. Pan, 1996. Cenozoic Sedimentation and Tectonic Geomorphology of the Shanxi Grabens. Science Press, Beijing, pp. 120-156(in Chinese).
Q. Wang, L.J. Liu, W.D. Wang, H.Z. Xu, W.Y. Sun, 2004. The mechanism of Quaternary palaeoenvironmental change in Circum-Bohai-Sea region and North China Plain. Geological Survey and Research, 27 (3), pp. 129-138, http://doi.org/10.3969/j.issn.1672-4135.2004.03.001(in Chinese with English abstract).
W. Wang, M.F. Zhou, D.P. Yan, J.W. Li, 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research, 192–195, pp. 107-124, http://doi.org/10.1016/j.precamres.2011.10.010.
L.K. Wang, Z.J. Yang, Z.W. Bi, Q.H. Yang, X.F. Fu, 2017. Research progress of Quaternary geology in Taiyuan Basin. China's Manganese Industry, 35 (3), pp. 54-57, http://doi.org/10.14101/j.cnki.issn.1002-4336.2017.03.016(in Chinese with English abstract).
M.W. Wara, A.C. Ravelo, M.L. Delaney, 2005. Permanent El Niño-like conditions during the Pliocene warm period. Science, 309 (5735), pp. 758-761, http://doi.org/10.1126/science.1112596.
R.Z. Wei, H.B. Li, C.L. Xu, Z.Q. Zhang, C.R. Liu, 2017. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift. Geological Survey of China, 4 (1), pp. 24-34, http://doi.org/10.19388/j.zgdzdc.2017.01.04(in Chinese with English abstract).
R.Z. Wei, Q.T. Zhuang, J.Y. Yan, Y.F. Wei, Y.W. Du, J.H. Fan, 2022. Late Cenozoic stratigraphic division and sedimentary environment of Jinzhong Basin in Shanxi Province, with the climate and lake evolution since the pre-Qin period (2500 years ago). Geology in China, 49 (3), pp. 912-928, http://doi.org/10.12029/gc20220316(in Chinese with English abstract).
T. Westerhold, N. Marwan, A.J. Drury, D. Liebrand, C. Agnini, E. Anagnostou, J.S.K. Barnet, S.M. Bohaty, D. De Vleeschouwer, F. Florindo, T. Frederichs, D.A. Hodell, A.E. Holbourn, D. Kroon, V. Lauretano, K. Littler, L.J. Lourens, M. Lyle, H. Pälike, U. Röhl, J. Tian, R.H. Wilkens, P.A. Wilson, J.C. Zachos, 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369 (6509), pp. 1383-1387, http://doi.org/10.1126/science.aba6853.
N.Q. Wu, Y.P. Pei, H.Y. Lu, Z.T. Guo, F.J. Li, T.S. Liu, 2006. Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial molluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 233 (3–4), pp. 287-299, http://doi.org/10.1016/j.palaeo.2005.10.006.
G.Q. Xiao, T. Zhan, J.Y. Ge, 2010. Development of the geomagnetical polarity time scale: A review. Advances in Earth Science, 25 (4), pp. 365-373(in Chinese with English abstract).
Y. Xu, L.P. Yue, J.X. Li, J.Q. Wang, B. Sun, L. Sun, J.Y. Zhang, J. Ma, 2013. Magnetostratigraphy of Late Neogene red clays in the Fuxing area of western foothills of the Lüliang mountains. Journal of Stratigraphy, 37 (1), pp. 33-40(in Chinese).
Y. Xu, J.X. Li, F. Pan, L.P. Yue, 2016. The basal ages and deposit process of the red clay in the west piedmont of the Lüliang mountains. Quaternary Sciences, 36 (5), pp. 1114-1124, http://doi.org/10.11928/j.issn.1001-7410.2016.05.08(in Chinese with English abstract).
Y. Xu, Y.M. Tang, F. Pan, J.X. Li, R. Zhang, L.P. Yue, 2019. Palaeomagnetic chronology and its tectonic implications of the red clay in the Wujiamao section in west piedmont of the Lüliang Mountains. Quaternary Sciences, 39 (2), pp. 328-338, http://doi.org/10.11928/j.issn.1001-7410.2019.02.06(in Chinese with English abstract).
J.Y. Yan, J.M. Hu, W.B. Gong, X.B. Liu, Y.G. Yin, C. Tan, 2020. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications. Geological Journal, 55 (11), pp. 7415-7428, http://doi.org/10.1002/gj.3744.
Y.B. Yang, C.C. Ye, A. Galy, X.M. Fang, Y. Xue, Y.D. Liu, R.S. Yang, R. Zhang, W.X. Han, W.L. Zhang, X.B. Ruan, 2021. Monsoon-enhanced silicate weathering as a new atmospheric CO2 consumption mechanism contributing to fast late Miocene global cooling. Paleoceanography and Paleoclimatology, 36 (1), Article e2020PA004008, http://doi.org/10.1029/2020PA004008.
J.T. Yin, Y.X. Yu, C.F. Jiang, J. Liu, Q.P. Zhao, P. Shi, 2017. Relationship between element geochemical characteristic and organic matter enrichment in Zhangjiatan Shale of Yanchang Formation, Ordos Basin. Journal of China Coal Society, 42 (6), pp. 1544-1556(in Chinese with English abstract).
L.P. Yue, T. Deng, Y.X. Zhang, J.Q. Wang, R. Zhang, L.R. Yang, F. Heller, 2004. Magnetostratigraphy of stratotype section of the Baode stage. Journal of Stratigraphy, 28 (1), pp. 48-51, http://doi.org/10.3969/j.issn.0253-4959.2004.01.006(in Chinese with English abstract).
J. Zachos, M. Pagani, L. Sloan, E. Thomas, K. Billups, 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292 (5517), pp. 686-693, http://doi.org/10.1126/science.1059412.
X.L. Zhang, 1983. Late Cenozoic palynological assemblage and its stratigraphic significance in Jinzhong fault depression, Shanxi Province. Petroleum Geology Anthology, Volume 5, Stratigraphic Paleontology, Geological Publishing House, Beijing, pp. 48-55(in Chinese).
R. Zhang, D.B. Jiang, Z.S. Zhang, E.T. Yu, 2015. The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, pp. 137-150, http://doi.org/10.1016/j.palaeo.2014.10.030.
T.F. Zhang, L.X. Sun, Y. Zhang, Y.H. Cheng, Y.F. Li, H.L. Ma, C. Lu, C. Yang, G.W. Guo, 2016. Geochemical characteristics of the Jurassic Yan'an and Zhiluo formations in the northern margin of Ordos Basin and their paleoenvironmental implications. Acta Geologica Sinica, 90 (12), pp. 3454-3472, http://doi.org/10.3969/j.issn.0001-5717.2016.12.013(in Chinese with English abstract).
L. Zhang, J.Q. Liu, X.G. Qin, Y. Mu, C.S. Jin, C.Q. Sun, J.X. Liu, C.L. Deng, 2018. Magnetostratigraphy and paleoenvironmental events recorded in a late Cenozoic sedimentary succession in Huaibei Plain, East China. Quaternary Science Reviews, 200, pp. 52-64, http://doi.org/10.1016/j.quascirev.2018.09.041.
Y.L. Zhao, 2010. Late Paleozoic Tectonic Evolution of the Central and Southern Grate Xing’an Ranges: Constrains from Provenance Characteristics of Permian Sandstones [Dissertation]. Jilin University, Jilin, pp. 1-112(in Chinese).
D.W. Zheng, P.Z. Zhang, J.L. Wan, D.Y. Yuan, C.Y. Li, G.M. Yin, G.L. Zhang, Z.C. Wang, W. Min, J. Chen, 2006. Rapid exhumation at ∼8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248 (1–2), pp. 198-208, http://doi.org/10.1016/j.epsl.2006.05.023.
R.X. Zhu, K.A. Hoffman, R. Potts, C.L. Deng, Y.X. Pan, B. Guo, C.D. Shi, Z.T. Guo, B.Y. Yuan, Y.M. Hou, W.W. Huang, 2001. Earliest presence of humans in northeast Asia. Nature, 413 (6854), pp. 413-417, http://doi.org/10.1038/35096551.
Q.T. Zhuang, H.L. He, R.Z. Wei, Z.M. Wang, F. Shi, J.Y. Yan, 2024. Late Cenozoic sedimentary environment evolution and provenance analysis of Taiyuan Basin in Shanxi graben system. Acta Sedimentologica Sinica, 42 (2), pp. 486-501, http://doi.org/10.14027/j.issn.1000-0550.2022.064(in Chinese with English abstract).
J.D.A. Zijderveld, 1967. A.C. demagnetization of rocks: Analysis of results. S.K. Runcorn, K.M. Creer, D.W. Collinson (Eds.), Methods in Palaeomagnetism, Elsevier, Amsterdam, pp. 254-286. |
|
|
|