|
|
Upwelling current and its relationship to the enrichment of organic matter in the Lower Silurian Longmaxi Formation, northern Chongqing-western Hubei area, southern China |
Jun-Jun Shena, Jia-Kai Yanb, Peng-Wan Wangc,*, Yu-Man Wangd, Lin Zhoue, Yu-Bing Jif, Min Xua |
a Hubei Cooperative Innovation Center of Unconventional Oil and Gas of Yangtze University, Wuhan 430100, Hubei Province, China;
b Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jingzhou 434020, Hubei Province, China;
c PetroChina Hangzhou Institute of Petroleum Geology, Hangzhou 310023, Zhejiang Province, China;
d PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
e Exploration and Production Research Institute, Jianghan Oilfield Company, SINOPEC, Wuhan 430100, Hubei Province, China;
f Zhejiang Oilfield Company Integrated Center of Exploration and Development, Hangzhou 310000, Zhejiang Province, China |
|
|
Abstract Upwelling currents play a crucial role in the enrichment of organic matter, yet the mechanisms driving this process remain incompletely understood due to methodological and data resolution limitations. In this paper, we employ a combination of biostratigraphic classification, qualitative methods, and quantitative methods to systematically analyze the sedimentological and geochemical characteristics of the Lower Silurian Longmaxi Formation in the northern Chongqing-western Hubei area, southern China. The relationship between the upwelling currents and organic matter enrichment in the shale of the Longmaxi Formation is investigated. Results indicate that the upwelling currents in the study area were primarily in?uenced by the foreland ?exure process. From the Rhuddanian (?exure-sedimentation stage) to the Aeronian (?exure-migration stage), the more intense tectonic activity led to gradual opening of the barrier between the South Qinling Ocean and the Yangtze Platform, resulting in an increase in the in?ux of the oceanic current. The upwelling currents significantly contributed to the organic matter production, albeit without substantially affecting the preservation conditions. Throughout the succession of the Longmaxi Formation, the organic matter content decreased gradually from the passive continental margin to the foreland ?exural stagnant basin, which was mainly due to deterioration of the preservation conditions as a result of sea level fall and increased terrigenous input. Despite the increase in the upwelling currents, they did not decisively control the organic matter enrichment. Spatially, during the Rhuddanian to Aeronian period, the organic matter content decreased similarly from the passive continental margin to the foreland ?exural stagnant basin, in?uenced by reduced organic matter production caused by weakening of the upwelling currents and the worsening preservation conditions caused by sea-level fall. The terrigenous input had a relatively minor impact. The results of this study provide new insights into the role of upwelling currents in the organic matter enrichment within the Longmaxi Formation, overcoming previous methodological and resolution barriers.
|
Received: 04 June 2023
|
Corresponding Authors:
* E-mail address: wangpw_hz@petrochina.com.cn (P.-W. Wang).
|
|
|
|
M. Adachi, K. Yamamoto, R. Sugisaki, 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47 (1–2), pp. 125-148, http://doi.org/10.1016/0037-0738(86)90075-8.
T.J. Algeo, K. Kuwahara, H. Sano, S. Bates, T. Lyons, E. Elswick, L. Hinnov, B. Ellwood, J. Moser, J.B. Maynard, 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308 (1–2), pp. 65-83, http://doi.org/10.1016/j.palaeo.2010.07.007.
T.J. Algeo, J. Liu, 2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, Article 119549, http://doi.org/10.1016/j.chemgeo.2020.119549.
T.J. Algeo, T.W. Lyons, 2006. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21 (1), Article PA1016, http://doi.org/10.1029/2004PA001112.
T.J. Algeo, J.B. Maynard, 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206 (3–4), pp. 289-318, http://doi.org/10.1016/j.chemgeo.2003.12.009.
T.J. Algeo, H. Rowe, 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324–325, pp. 6-18, http://doi.org/10.1016/j.chemgeo.2011.09.002.
C.T. Bolton, K.T. Lawrence, S.J. Gibbs, P.A. Wilson, L.C. Cleaveland, T.D. Herbert, 2010. Glacial–interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones. Earth and Planetary Science Letters, 295 (3–4), pp. 401-411, http://doi.org/10.1016/j.epsl.2010.04.014.
Q.S. Cai, M.Y. Hu, O.I. Kane, Z. Yang, Y.R. Wen, Q. Luo, M.T. Li, Z.G. Hu, Q.J. Deng, 2023. Petrological and geochemical characteristics of the Ordovician–Silurian black shale in eastern Sichuan and western Hubei, South China: Differential sedimentary responses to tectonism and glaciation. Journal of Palaeogeography, 12 (1), pp. 129-152, http://doi.org/10.1016/j.jop.2022.09.003.
S.E. Calvert, T.F. Pedersen, 1993. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113 (1–2), pp. 67-88, http://doi.org/10.1016/0025-3227(93)90150-T.
F.P. Chavez, J.R. Toggweiler, 1995. Physical estimates of global new production: The upwelling contribution. C.P. Summerhayes, K.-C. Emeis, M.V. Angel, R.L. Smith, B. Zeitzschel (Eds.), Upwelling in the Ocean: Modern Processes and Ancient Records, John Wiley & Sons, Chichester, pp. 313-320.
X. Chen, Q. Chen, Y.Y. Zhen, H.Y. Wang, L.N. Zhang, J.P. Zhang, W.H. Wang, Z.H. Xiao, 2018. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region. Science China Earth Sciences, 61 (9), pp. 1195-1203, http://doi.org/10.1007/s11430-017-9222-x.
X. Chen, J.Y. Rong, Y. Li, A.J. Boucot, 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204 (3–4), pp. 353-372, http://doi.org/10.1016/S0031-0182(03)00736-3.
L.R.M. Cocks, T.H. Torsvik, 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews, 117, pp. 40-79, http://doi.org/10.1016/j.earscirev.2012.12.001.
L. Diester-Haass, 1977. Radiolarian/planktonic foraminiferal ratios in a coastal upwelling region. Journal of Foraminiferal Research, 7 (1), pp. 26-33, http://doi.org/10.2113/gsjfr.7.1.26.
J. Dymond, E. Suess, M. Lyle, 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7 (2), pp. 163-181, http://doi.org/10.1029/92PA00181.
J. Han, Q.S. Cai, Y. Li, X.W. Li, 2019. Forming environment and development model of high-quality marine shale: A case of the Wufeng–Longmaxi Formations shale in Zigui-Xintan section in the Middle Yangtze region. Journal of Palaeogeography (Chinese Edition), 21 (4), pp. 661-674, http://doi.org/10.7605/gdlxb.2019.04.044(in Chinese with English abstract).
P.H. Heckel, 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. AAPG Bulletin, 61 (7), pp. 1045-1068, http://doi.org/10.1306/C1EA43C4-16C9-11D7-8645000102C1865D.
U. Holzwarth, O. Esper, K. Zonneveld, 2007. Distribution of organic-walled dinoflagellate cysts in shelf surface sediments of the Benguela upwelling system in relationship to environmental conditions. Marine Micropaleontology, 64 (1–2), pp. 91-119, http://doi.org/10.1016/j.marmicro.2007.04.001.
Y.H. Hu, W.D. Sun, X. Ding, F.Y. Wang, M.X. Ling, J. Liu, 2009. Volcanic event at the Ordovician–Silurian boundary: The message front K-bentonite of Yangtze Block. Acta Petrologica Sinica, 25 (12), pp. 3298-3308(in Chinese with English abstract).
B.C. Huang, Y.G. Yan, J.D.A. Piper, D.H. Zhang, Z.Y. Yi, S. Yu, T.H. Zhou, 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186, pp. 8-36, http://doi.org/10.1016/j.earscirev.2018.02.004.
C.S. Jin, C. Li, T.J. Algeo, S.Y. Wu, M. Cheng, Z.H. Zhang, W. Shi, 2020. Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China. Marine and Petroleum Geology, 111, pp. 75-87, http://doi.org/10.1016/j.marpetgeo.2019.08.005.
B. Jones, D.A.C. Manning, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, pp. 111-129, http://doi.org/10.1016/0009-2541(94)90085-X.
Z.K. Lan, J.J. Shen, 2022. Depositional paleo-environments of lower Cambrian Qiongzhusi Formation in the western middle Yangtze Block and its controlling effect on the organic matter enrichment. Energies, 15 (10), p. 3761, http://doi.org/10.3390/en15103761.
Y.F. Li, T.W. Zhang, G.S. Ellis, D.Y. Shao, 2017. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, pp. 252-264, http://doi.org/10.1016/j.palaeo.2016.11.037.
S.H. Little, D. Vance, T.W. Lyons, J. McManus, 2015. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. American Journal of Science, 315 (2), pp. 77-119, http://doi.org/10.2475/02.2015.01.
Y.B. Lu, S. Jiang, Y.C. Lu, S. Xu, Y. Shu, Y.X. Wang, 2019. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China. Marine and Petroleum Geology, 109, pp. 22-35, http://doi.org/10.1016/j.marpetgeo.2019.06.007.
M.L. Machain-Castillo, M.A. Monreal-Gómez, E. Arellano-Torres, M. Merino-Ibarra, G. González-Chávez, 2008. Recent planktonic foraminiferal distribution patterns and their relation to hydrographic conditions of the Gulf of Tehuantepec, Mexican Pacific. Marine Micropaleontology, 66 (2), pp. 103-119, http://doi.org/10.1016/j.marmicro.2007.08.003.
M. Mohtadi, P. Rossel, C.B. Lange, S. Pantoja, P. Böning, D.J. Repeta, M. Grunwald, F. Lamy, D. Hebbeln, H. Brumsack, 2008. Deglacial pattern of circulation and marine productivity in the upwelling region off central-south Chile. Earth and Planetary Science Letters, 272 (1–2), pp. 221-230, http://doi.org/10.1016/j.epsl.2008.04.043.
C.L. Mu, K.K. Zhou, W. Liang, X.Y. Ge, 2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration. Acta Geologica Sinica, 85 (4), pp. 526-532(in Chinese with English abstract).
H.T. Mullins, J.B. Thompson, K. McDougall, T.L. Vercoutere, 1985. Oxygen-minimum zone edge effects: Evidence from the central California coastal upwelling system. Geology, 13 (7), pp. 491-494, http://doi.org/10.1130/0091-7613(1985)13<491:OZEEEF>2.0.CO;2.
A. Munnecke, M. Calner, D.A.T. Harper, T. Servais, 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296 (3–4), pp. 389-413, http://doi.org/10.1016/j.palaeo.2010.08.001.
R.W. Murray, 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90 (3–4), pp. 213-232, http://doi.org/10.1016/0037-0738(94)90039-6.
R.W. Murray, M. Leinen, 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60 (20), pp. 3869-3878, http://doi.org/10.1016/0016-7037(96)00236-0.
H.K. Nie, D.H. Li, T. Jiang, C.N. Yan, W. Du, G.R. Zhang, 2020. Logging isochronous stratigraphic division of shale based on characteristics of graptolite zones and its significance: A case study of Wufeng Formation–Longmaxi Formation in Sichuan Basin and its periphery. Acta Petrolei Sinica, 41 (3), pp. 273-283, http://doi.org/10.7623/syxb202003002(in Chinese with English abstract).
H. Oberhänsli, 1991. Upwelling signals at the northeastern Walvis Ridge during the past 500,000 years. Paleoceanography, 6 (1), pp. 53-71, http://doi.org/10.1029/90PA02106.
J.T. Parrish, M.L. Droser, D.J. Bottjer, 2001. A Triassic upwelling zone: The Shublik Formation, Arctic Alaska. U.S.A. Journal of Sedimentary Research, 71 (2), pp. 272-285, http://doi.org/10.1306/052600710272.
M.A. Pasley, W.A. Gregory, G.F. Hart, 1991. Organic matter variations in transgressive and regressive shales. Organic Geochemistry, 17 (4), pp. 483-509, http://doi.org/10.1016/0146-6380(91)90114-Y.
T.F. Pedersen, S.E. Calver, 1990. Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?. AAPG Bulletin, 74, pp. 454-466.
Z. Qiu, C.N. Zou, B.J.W. Mills, Y.J. Xiong, H.F. Tao, H.L. Lu, W.J. Xiao, S.W. Poulton, 2022. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Communications Earth and Environment, 3, p. 82, http://doi.org/10.1038/s43247-022-00412-x.
Z. Qiu, C.N. Zou, H.Y. Wang, D.Z. Dong, B. Lu, Z.H. Chen, D.X. Liu, G.Z. Li, H.L. Liu, J.L. He, L. Wei, 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng–Longmaxi formations shale gas in South China. Natural Gas Geoscience, 31 (2), pp. 163-175, http://doi.org/10.11764/j.issn.1672-1926.2019.11.003(in Chinese with English abstract).
S.M. Rimmer, 2004. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206 (3–4), pp. 373-391, http://doi.org/10.1016/j.chemgeo.2003.12.029.
J.Y. Rong, B. Huang, 2014. Study of mass extinction over the past thirty years: A synopsis. Scientia Sinica (Terrae), 44 (3), pp. 377-404, http://doi.org/10.1360/zd-2014-44-3-377(in Chinese with English abstract).
F.H. Shang, Y.M. Zhu, Q.H. Hu, Y. Wang, Y. Li, W. Li, R.Y. Liu, H.T. Gao, 2020. Factors controlling organic-matter accumulation in the Upper Ordovician–Lower Silurian organic-rich shale on the northeast margin of the Upper Yangtze platform: Evidence from petrographic and geochemical proxies. Marine and Petroleum Geology, 121, Article 104597, http://doi.org/10.1016/j.marpetgeo.2020.104597.
J.J. Shen, P.W. Wang, K.Q. Chen, D.T. Zhang, Y.M. Wang, Q.S. Cai, J.H. Meng, 2021. Relationship between volcanic activity and enrichment of shale organic matter during the Ordovician–Silurian transition in western Hubei, southern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, Article 110551, http://doi.org/10.1016/j.palaeo.2021.110551.
W.B. Su, W.D. Huff, F.R. Ettensohn, X.M. Liu, J.E. Zhang, Z.M. Li, 2009. K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15 (1), pp. 111-130, http://doi.org/10.1016/j.gr.2008.06.004.
T. Sweere, S. van den Boorn, A.J. Dickson, G. Reichart, 2016. Definition of new trace metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chemical Geology, 441, pp. 235-245, http://doi.org/10.1016/j.chemgeo.2016.08.028.
N. Tribovillard, T.J. Algeo, T. Lyons, A. Riboulleau, 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232 (1–2), pp. 12-32, http://doi.org/10.1016/j.chemgeo.2006.02.012.
C.Y. Wang, Z.T. Dong, X.H. Fu, Q. Chen, X.F. Liu, M.M. Tang, Z.T. Wang, 2021. Spatiotemporal evolution and genesis of the Late Ordovician–Early Silurian marine euxinia in northeastern Upper Yangtze Basin, South China. Frontiers in Earth Science, 9, Article 788349, http://doi.org/10.3389/feart.2021.788349.
Y.M. Wang, B. Chen, X.J. Li, H. Wang, L.C. Chang, S. Jiang, 2018a. Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation, northeast Sichuan area. Acta Petrolei Sinica, 39 (10), pp. 1092-1102, http://doi.org/10.7623/syxb201810002(in Chinese with English abstract).
Y.M. Wang, D.Z. Dong, J.L. Huang, X.J. Li, S.F. Wang, 2016. Guanyinqiao Member lithofacies of the Upper Ordovician Wufeng Formation around the Sichuan Basin and the significance to shale gas plays, SW China. Petroleum Exploration and Development, 43 (1), pp. 45-53, http://doi.org/10.1016/S1876-3804(16)30005-2.
Y.M. Wang, X.J. Li, B. Chen, J. Han, J.M. Zhang, F. Yuan, J. Ma, B. Dai, H. Wang, S. Jiang, 2018b. Distribution characteristics and geological significance of the thickest Aeronian bentonite bed in Middle-Upper Yangtze Region. Natural Gas Geoscience, 29 (1), pp. 42-54, http://doi.org/10.11764/j.issn.1672-1926.2017.11.012(in Chinese with English abstract).
Y.M. Wang, X.J. Li, D.Z. Dong, C.C. Zhang, S.F. Wang, 2017. Main factors controlling the sedimentation of high-quality shale in Wufeng–Longmaxi Fm, Upper Yangtze region. Natural Gas Industry, 37 (4), pp. 9-20, http://doi.org/10.3787/j.issn.1000-0976.2017.04.002(in Chinese with English abstract).
Y.M. Wang, X.J. Li, H. Wang, S. Jiang, B. Chen, J. Ma, B. Dai, 2019. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng – Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China. Petroleum Exploration and Development, 46 (4), pp. 687-700, http://doi.org/10.1016/S1876-3804(19)60226-0.
Y.M. Wang, H.Y. Wang, J.J. Shen, W.H. Bai, D.Z. Dong, Z. Qiu, X.J. Li, C.H. Wang, 2020. A new discovery and geological significance of thick-layered bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the northern Sichuan-western Hubei area. Acta Petrolei Sinica, 41 (11), pp. 1309-1323, http://doi.org/10.7623/syxb202011002(in Chinese with English abstract).
S. Worne, S. Kender, G.E.A. Swann, M.J. Leng, A.C. Ravelo, 2019. Coupled climate and subarctic Pacific nutrient upwelling over the last 850,000 years. Earth and Planetary Science Letters, 522, pp. 87-97, http://doi.org/10.1016/j.epsl.2019.06.028.
J. Wu, F. Liang, W. Lin, H.Y. Wang, W.H. Bai, C. Ma, S.S. Sun, Q. Zhao, X.J. Song, R.Z. Yu, 2017. Reservoirs characteristics and gas-bearing capacity of Wufeng–Longmaxi Formation shale in Well WX-2, northeast Chongqing area. Acta Petrolei Sinica, 38 (5), pp. 512-524, http://doi.org/10.7623/syxb201705004(in Chinese with English abstract).
L.Y. Wu, Y.C. Lu, S. Jiang, X.F. Liu, Z.H. Liu, Y.B. Lu, 2019. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician–Lower Silurian in the Upper Yangtze area. Marine and Petroleum Geology, 102, pp. 74-85, http://doi.org/10.1016/j.marpetgeo.2018.11.017.
Z.D. Xi, S.H. Tang, 2021. Geochemical characteristics and organic matter accumulation of Late Ordovician shale in the Upper Yangtze Platform, South China. Energy Reports, 7, pp. 667-682, http://doi.org/10.1016/j.egyr.2021.01.029.
Z.D. Xi, S.H. Tang, G.G. Lash, B. Zhang, D.L. Lin, 2021. Geochemical characteristics of organic carbon and pyrite sulfur in Ordovician–Silurian transition shales in the Yangtze Platform, South China: Implications for the depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 563, Article 110173, http://doi.org/10.1016/j.palaeo.2020.110173.
B. Xiao, S.G. Liu, B. Ran, D. Yang, Y.Y. Han, 2019. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: Application in the northern margin of Sichuan Basin, South China. Geological Review, 65 (6), pp. 1316-1330, http://doi.org/10.16509/j.georeview.2019.06.002(in Chinese with English abstract).
C.T. Xiao, J. Ding, W.S. Hu, Y.J. Tang, B.Q. Lv, H. Chai, F. Yan, 2009. A study on palaeoecology in upwelling phase region of Middle Permian in the Lower Yangtze area. Acta Sedimentologica Sinica, 27 (2), pp. 319-325(in Chinese with English abstract).
S.C. Yang, W.X. Hu, X.L. Wang, 2021. Mechanism and implications of upwelling from the Late Ordovician to early Silurian in the Yangtze region, South China. Chemical Geology, 565, Article 120074, http://doi.org/10.1016/j.chemgeo.2021.120074.
S.C. Yang, W.X. Hu, S.P. Yao, X.L. Wang, W.H. He, Y. Wang, F. Zhu, F.N. Sun, 2020. Constraints on the accumulation of organic matter in Upper Ordovician–lower Silurian black shales from the Lower Yangtze region, South China. Marine and Petroleum Geology, 120, Article 104544, http://doi.org/10.1016/j.marpetgeo.2020.104544.
B.W. Zan, S.G. Liu, B. Ran, Y.H. Ye, Yang Di, R. Huang, G.D. Xia, K. Jiao, 2017. An analysis of barite concretions from lower Silurian Longmaxi Formation on the northern margin of the Yangtze block and their genetic mechanism. Acta Petrologica et Mineralogica, 36 (2), pp. 213-226, http://doi.org/10.3969/j.issn.1000-6524.2017.02.007(in Chinese with English abstract).
B.M. Zhang, S.C. Zhang, L.C. Bian, Z.J. Jin, D.R. Wang, 2007. Analysis on the development model of marine source rocks from Neoproterozoic to Lower Paleozoic in China. Chinese Science Bulletin, 52 (S1), pp. 58-69(in Chinese).
S.C. Zhang, B.M. Zhang, L.Z. Bian, Z.J. Jin, D.R. Wang, X.Y. Zhang, Z.Y. Gao, J.F. Chen, 2005. Development constraints of marine source rocks in China. Earth Science Frontiers, 12 (3), pp. 39-48, http://doi.org/10.3321/j.issn:1005-2321.2005.03.006(in Chinese with English abstract).
C.N. Zou, Z. Qiu, S.W. Poulton, D.Z. Dong, H.Y. Wang, D.Z. Chen, B. Lu, Z.S. Shi, H.F. Tao, 2018. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction. Geology, 46 (6), pp. 535-538, http://doi.org/10.1130/G40121.1. |
|
|
|