Alfaro P., Gibert L., Moretti M., Garcia-Tortosa F.J., Sanz de Galdeano C., Galindo-Zaldivar J., López-Garrido Á.C., 2010. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake (S. Spain).Terra Nova, 22, 172-179.
Allen J.R.L.,1977. The possible mechanics of convolute lamination in graded sandstone beds.Journal Geological Society London, 134, 19-31.
Allen J.R.L.,1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins.Sedimentary Geology, 46, 67-75.
Ambraseys N.N.,1988. Engineering seismology.International Journal Earthquake Engineering Structural Dynamics, 17, 1-105.
Audemard F.A., Gómez J.C., Tavera H.J., Orihuel G.N., 2005. Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru.Engineering Geology, 78, 237-255.
Bastin S.H., Bassett K., Quigley M.C., Maurer B., Green R.A., Bradley B., Jacobson D., 2016. Late Holocene liquefaction at sites of contemporary liquefaction during the 2010-2011 Canterbury earthquake sequence, New Zealand.Bulletin of the Seismological Society of America, 106, 881-903.
Belzyt A., Pisarska-Jamroy M., Bitinas A., Woronko B., Phillips E.R., Piotrowski J.A., Jusiene A., 2021. Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania.Sedimentology, 68, 3033-3056.
Berg T.M., chief compiler,1980. Geologic Map of Pennsylvania. Pennsylvania Geological Survey, 4th series, Map 1.
Bertran P., Font M., Giret A., Manchuel K., Sicillia D., 2019. Experimental soft-sediment deformation caused by fluidization and intrusive ice melt in sand.Sedimentology, 66, 1102-1117.
Chan M.A., Hasiotis S.T., Parrish J.T., 2019. Enigmatic clastic pipe swarms and implications for fluidization dynamics in aeolian deposits. Sedimentology, 66, 513-535.
El Taki H., Pratt B.R., 2012. Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites: seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada.Bulletin of Canadian Petroleum Geologists, 60, 37-58.
Ettensohn F.R., Kulp, M.A. Rast N., 2002. Interpreting ancient marine seismites and apparent epicentral areas for paleo-earthquakes, Middle Ordovician Lexington Limestone, central Kentucky. In: Ettensohn, F.R., Rast, N., Brett, C.E., (Eds.), Ancient Seismites. Geological Society of America Special Publication 359, pp. 177-190.
Ezquerro L., Moretti M., Liesa C.L., Luzón A., Pueyo E.L., Simón J.L., 2016. Controls on space-time distribution of soft-sediment deformation structures: applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain).Sedimentary Geology. 344, 91-111.
Ezquerro L., Moretti M., Liesa C.L., Luzón A., Simón J.L., 2015. Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault.Tectonphysics, 655. 191-205.
Faill R.T.,1973. Tectonic development of the Triassic Newark-Gettysburg basin in Pennsylvania.Geological Society of America Bulletin, 84, 725-740.
Fillmore D.L., Szajna M.J., Lucas S.G., Hartline B.W., Simpson E.L., 2017. Ichnology of the Lake Triassic Lake Margin: The Lockatong Formation, Newark Basin, Pennsylvania. New Mexico Museum of Natural History and Science Bulletin 76, 107 p.
Galli P.,2000. New empirical relationships between magnitude and distance for liquefaction.Tectonophysics, 324, 169-187.
Green A.R., Maurer B.W., Brendon B., Wotherspoon L., Cubrinovski M., 2013. Implications for liquefaction observations in New Zealand for interpreting paleoliquefaction data in the central eastern United States (CEUS). U.S. Geological Society Final Technical Report, 97 pp.
Guiraud M., Plaziat J.-C.,1993. Seismites in the fluvial Bima sandstones: Identification of paleoseisms and discussion of their magnitudes in a Cretaceous synsedimentary strike-slip basin (Upper Benue, Nigeria).Tectonophysics, 225, 493-522.
Huntoon J.E., Furlong K.P., 1992, Thermal evolution of the Newark Basin.Journal of Geology, 100, 579-591.
Jiang H., Zhong N., Li Y., Ma X., Xu H., Shi W., Zhang S., Nie G., 2017. A continuous 13.3-ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau. Scientific Reports, 7, 15686, https//:doi:10.1038/s41598-017-16027-8.
Jones A.P., Omoto K., 2000. Towards establishing criteria for the identifying trigger mechanisms for soft-sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan.Sedimentology, 47, 1211-1226.
Lowe D.R.,1975. Water escape structures in coarse-grained sediments.Sedimentology, 22, 157-204.
Lucas S.G., Szajna M.J., Lockley M.G., Fillmore D.L., Simpson E.L., Klein H., Boyland J., Hartline B.W., 2013, The Middle-Late Triassic tetrapod footprint ichnogenus Gwyneddichnium. In: Lockley, M.G., Lucas, S.G., (Eds.), Fossil Footprints of Western North America. New Mexico Museum of Natural History and Science Bulletin, 62, pp. 135-156.
Maltman, A. J., Bolton, A.2003. How sediments become mobilized. In: Van Rensberger, Hillis, P., Maltman, A.J., Morley, C.K., (Eds.), Subsurface Sediment Mobilization. Geological Society, London, Special Publications 216, pp. 9-20.
McCalpin, J. (Ed.), 1996. Paleoseismology. Academic Press, New York, U.S.A., 588 p.
McCalpin J., Ferrario F., Figueiredo P., Livio F., Grützner C., Posarska-Jamroży M., Quigley M., Reicherter K., Rockwell T., Štepnčíková P., Tábrík P., 2023. New developments in onshore paleoseismic methods, and their impact on Quaternary tectonics studies.Quaternary International, 664, 59-76.
McLaughlin D.B.,1945. Type sections of the Stockton and Lockatong formations.Pennsylvania Academy of Science Proceedings, 19, 102-113.
Molina J.M., Alfaro P., Moretti M., Soria J.M., 2002. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene Guadalquivir Basin, Spain).Terra Nova, 10, 145-150.
Montenat C., Barrier P., d’Estevou P.O., Hibsch C., 2007. Seismites: an attempt at critical analysis and classification.Sedimentary Geology, 196, 5-30.
Moretti M., Alfaro P., Caselles O., Canas J.A., 1999. Modeling seismites with a digital shaking table.Tectonophysics, 304, 369-383.
Moretti M., Ronchi A., 2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Nuequén Basin (Northern Patagonia). Sedimentary Geology, 235, 200-209. https//:doi:10.1016/j.sedgeo2010.090.014.
Moretti M., Sabato L.,2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’ Arcangelo Basin (Southern Italy): Seismic shock vs overloading. Sedimentary Geology, 196, 31-45. https//:doi10.1016/j.sedgeo.2006.05.012.
Moretti M., Soria J.M., Alfaro P., Walsh N., 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain).Facies, 44, 283-294.
Moretti M., van Loon A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites.Journal of Palaeogeography, 3(4), 162-173.
Morsilli M., Bucci M.G., Gliozzi E., Lisco S., Moretti M.,2020. Sedimentary features influencing the occurrence and spatial variability of seismites (late Messinian, Gargano Promontory, southern Italy). Sedimentary Geology, 401, https//:doi.org/10.1016/j.sedgeo.2020.105628.
Nichols R.J., Sparks R.S.J., Wilson C.J.N., 1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures.Sedimentology, 41, 233-253.
Obermeier S.F.,1996. Use of liquefaction-induced features for paleoseismic analysis - An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes.Engineering Geology, 44, 1-76.
Olsen P.E.,1997. Stratigraphic record of the Early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system.Annual Review of Earth and Planetary Sciences, 25, 337-401.
Olsen P.E.,2010. Fossil great lakes of the Newark Supergroup - 30 years later. In: Benimoff, A.I., (Ed.), Field Trip Guidebook, New York State Geological Association, 83nd Annual Meeting, pp. 101-162.
Olsen P.E., Kent D.V., 1996. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic.Palaeogeography, Palaeoclimatology, Palaeoecology, 122, 1-26.
Olsen P.E., Kent D.V., Cornet B., Witte W.K., Schlische R.W., 1996. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America).Geological Society of America Bulletin, 108, 40-77.
Olsen P.E., Kent D.V., Whiteside H., 2010. Implications of the Newark Supergroup-based as trochronology and geomagnetic polarity scale (Newark-APTS) for the tempo and mode of the early diversification of Dinosauria.Earth Environmental Science Transactions Royal Society of Edinburgh, 101, 201-229.
Owen G.,1987. Deformation processes in unconsolidated sands. In: Jones, M.E., Preston, R.F. (Eds.), Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publications, 29, pp. 11-24.
Owen G.,1996. Experimental soft-sediment deformation: structures formed by liquefaction of unconsolidated sands and some ancient examples.Sedimentology, 43, 279-293.
Owen G., Moretti M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands.Sedimentary Geology, 235, 141-147.
Owen G., Moretti M., Alfaro P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions.Sedimentary Geology, 235, 133-140.
Papathanassiou G., Pavlides S., Christaras B., Pitilakis K., 2005. Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean region.Journal of Geodynamics, 40, 257-278.
Pisarska-Jamroży M., van Loon A.J., Mleczak M., Roman M., 2019. Enigmantic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisotatic crustal rebound.Geomorphology, 326, 239-251.
Pisarska-Jamroży M., Woronko B., Woźniak P.P., Rosentau A., Hang T., Steffen H., Steffen R., 2024. Deformation structures as key hints for interpretation of ice sheet dynamics - a case study from northeastern Estonia.Quaternary Science Reviews, 336, 108788.
Pisarska-Jamroży, M., Woźniak, P.P., 2019. Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland.Geomorphology, 2019, 225-238.
Pope M.C., Read J.F., Bambach R., Hofman H.J., 1997. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: Sedimentary recorders of earthquakes in the Appalachian basin.Geological Society of America Bulletin, 109, 489-503.
Pōldsaar K., Ainsaar L., 2015. Soft-sediment deformation structures in the Cambrian (Series 2) tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record. Palaeoworld, 24, 16-35, http://dx.doi.org/10.1016/j.palwor.2014.12.003.
Pryce E., Kirkman C., Cartwright J., 2023, Crater formation during the onset of mud volcanism.Geology, 51, 252-256.
Ringrose P.S.,1988. Paleoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland.Terra Research, 1, 57-62.
Rodrigues N., Cobbold P.R., Løseth H., 2009, Physical modelling of sand injectites.Tectonophysics, 474, 610-632.
Ross J.A., Peakal J., Keevil G.M., 2011. An integrated model of extrusive sand injectites in cohesionless sediments.Sedimentology, 58, 1693-1715.
Rossetti D.F., Góes A.M., 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil.Sedimentary Geology, 135, 137-156.
Rossetti D.F.,1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sãn Luís Basin, northern Brazil: evidence for paleoseismicity.Sedimentology, 46, 1065-1081.
Schlische R.W.,2003. Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system. In: Letourneau, P.M., Olsen, P.E., (Eds.), The Great Rift Valleys of Pangea in Eastern North America - Tectonics, Structure, and Volcanism, Volume 1. Columbia University Press, pp. 21-64
Schlische R.W., Olsen P E., 1988. Structural evolution of the Newark basin. In: Husch J.M., Hozik, M. J., (Eds.), Geology of the Central Newark Basin. 5th Annual Meeting of New Jersey Geological Association, pp. 43-65.
Schlische, R.W. Olsen, P.E., 1990. Quantitative filling model for continental extensional basins with applications to early Mesozoic rifts of eastern North America.Journal of Geology, 98, 135-155.
Seilacher A.,1969. Fault graded beds interpreted as seismites.Sedimentology, 13, 155-159.
Sims J.D.,1973. Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California.Science, 182, 161-163.
Smoot J.P., Olsen P.E., 1988. Massive mudstones in basin analysis and paleoclimatic interpretation of the Newark Supergroup. In: Manspeizer, W., (Ed.), Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean. Elsevier, Amsterdam, pp. 249-274.
Strachan L. J.2002. Slump‐initiated and controlled syndepositional sandstone remobilization: an example from the Namurian of County Clare, Ireland.Sedimentology, 49, 25-41.
Strasser M., Monecke K., Schellmann M., Anselmetti F.S., 2013. Lake sediments as natural seismographs: a complied record of Lake Quaternary earthquakes in Central Switzerland and its implications for Alpine deformation.Sedimentology, 60, 319-341.
Taşgin, C, K. Türkmen, 2009. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı Formation, eastern Turkey.Sedimentary Geology, 218, 16-30.
Töro B., Pratt B.R., Renaut R.W., 2015, Tectonically induced change in lake evolution recorded by seismites in the Eocene Green River Formation, Wyoming.Terra Nova, 27, 218-224.
Van Houten, F.B., 1962. Cyclic sedimentation and the origin of analcime-rich Upper Trassic Lockatong Formation, west-central New Jersey and adjacent Pennsylvania.American Journal of Science, 260, 561-576.
Van Houten, F.B., 1964, Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, central New Jersey and adjacent Pennsylvania. In: Mermaid, O.F., (Ed.), Symposium on Cyclic Sedimentation. Kansas Geological Survey Bulletin 169, pp. 497-531.
Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview.Geologos, 15, 3-55.
Van Loon A.J., Pisarska-Jamroży M., 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound.Sedimentary Geology, 300, 1-10.
Van Loon A.J., Pisarska-Jamroży M., Woronko B., 2020. Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks.Geological Quarterly, 64, 626-640.
Vanneste K., Meghraoui M., Camelbeeck T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system.Tectonophysics, 309, 57-79.
Wetzler N., Marco S., Heifetz E., 2010. Quantitative analysis of seismogenic shear-induced turbulence in lake sediments.Geology, 38, 303-306.
Wheeler R.L.,2002. Distinguishing seismic from nonseismic soft-sediment structures: Criteria from seismic hazard analysis. In: Ettensohn, F. R., Rast, N., Brett, C.E., (Eds.), Ancient Seismites. Geological Society of America Special Publication, 359, pp. 1-12.
Wheatley, D.F. Chan, M.A., 2017. Sedimentary water escape versus gas escape structures: examples from the ancient and modern records and laboratory experiments. Reservoir, 44, 6, 14-21.
Withjack M.O., Schlische R.W., Malinconico M.L., Olsen P.E., 2013. Rift-basin development: lessons from the Triassic-Jurassic Newark Basin of eastern North America. In: Mohriak, W. U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemok, M., Sinha, S. T., (Eds.), Conjugate Divergent Margins. The Geological Society. Special Publication 369, pp. 301-321. |