Aizenberg J., Lambert G., Weiner S., Addadi L., 2002. Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an Ascidian skeleton.Journal of the American Chemical Society, 124, 32-39.
Anagnostidis K.,1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales.Arch Hydrobiol Suppl, 80, 327-472.
Arvidson R.S., Mackenzie F.T., 1999. The dolomite problem; control of precipitation kinetics by temperature and saturation state.American Journal of Science, 299, 257-288.
Bjørlykke K., Jahren J., 2012. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs.AAPG Bulletin, 96, 2193-2214.
Bontognali T.R.R., Vasconcelos C., Warthmann R.J., Lundberg R., McKenzie J.A., 2012. Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi (UAE).Terra Nova, 24, 248-254.
Burns S.J., Mckenzie J.A., Vasconcelos C., 2000. Dolomite formation and biogeochemical cycles in the Phanerozoic.Sedimentology, 47, 49-61.
Chan C.S., Fakra S.C., Emerson D., Fleming E.J., Edwards K.J., 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation.The ISME Journal, 5, 717-727.
Chang B., Li C., Liu D., Foster I., Tripati A., Lloyd K.M., Maradiaga I., Luo G., An Z., She Z., Xie S., Tong J., Huang J., Algeo J.T., Lyons W.T., andImmenhauser A., 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”.Proceedings of the National Academy of Sciences, 117, 14005-14014.
De Leeuw N.H., Parker S.C., 2001. Surface-water interactions in the dolomite problem.Physical Chemistry Chemical Physics, 3, 3217-3221.
Deng S., Dong H., Lv G., Jiang H., Yu B., Bishop E.M., 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278, 151-159.
Dickson J.A.D.,2001. Transformation of echinoid Mg calcite skeletons by heating.Geochimica et Cosmochimica Acta, 65, 443-454.
Dupraz C., Reid R.P., Braissant O., Decho W.A., Norman R.S., Visscher T.P., 2009. Processes of carbonate precipitation in modern microbial mats.Earth-Science Reviews, 96, 141-162.
Folk R.L., Land L.S., 1975. Mg/Ca ratio and salinity: Two controls over crystallization of Dolomite.AAPG Bulletin, 59, 60-68.
Fukuchi S., Yoshimune K., Wakayama M., Moriguchi M., Nishikawa K., 2003. Unique amino acid composition of proteins in halophilic bacteria.Journal of Molecular Biology, 327, 347-357.
Gao X., Han Y., Xia Q., Li J., Liu F., Zhao Y., Han Z., 2022. Combined effects of microorganisms and inorganic templates on the nucleation and precipitation of magnesium-calcium minerals: Experimental evidences and theoretical calculations.Applied Surface Science, 598, 153813.
Gregg J.M., Bish D.L., Kaczmarek S.E., Machel H.G., 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review.Sedimentology, 62, 1749-1769.
Han Z., Qi P., Zhao Y., Guo N., Yan H., Tucker E.M., Li D., Wang J., Zhao H., 2022a. High Mg/Ca molar ratios promote protodolomite precipitation induced by the extreme halophilic bacteriumVibrio harveyi QPL2. Frontiers in Microbiology, 13, 821968.
Han Z., Yan H., Zhou S., Zhao H., Zhang Y., Zhang N., Yao C., Zhao L., Han C., 2013. Precipitation of calcite induced bySynechocystis sp. PCC6803. World Journal of Microbiology and Biotechnology, 29, 1801-1811.
Han Z., Zhang Y., Zhao Y., Gao X., Tucker M.E., 2022b. Amorphous and crystalline carbonate biomineralization in cyanobacterial biofilms induced bySynechocystis sp. PCC6803 cultured in CaCl2-MgCl2-SrCl2 mediums. Geomicrobiology Journal, 39, 767-780.
Han Z., Zhao Y., Yan H., Zhao H., Han M., Sun B., Meng R., Zhuang D., Li D., Gao W., Du S., Wang X., Fan K., Hu W., Zhang M., 2017. The characterization of intracellular and extracellular biomineralization induced bySynechocystis sp. PCC6803 cultured under low Mg/Ca ratios conditions. Geomicrobiology Journal, 34, 362-373.
Holland H.D., Zimmermann H., 2000. The dolomite problem revisited.International Geology Review, 42, 481-490.
Holmboe M., Wold S., Jonsson M., 2012. Porosity investigation of compacted bentonite using XRD profile modeling.Journal of Contaminant Hydrology, 128, 19-32.
Hopkinson L., Rutt K., Cressey G., 2008. The transformation of nesquehonite to hydromagnesite in the system CaO-MgO-H2O-CO2: An experimental spectroscopic study.The Journal of Geology, 116, 387-400.
Huang C.K., Kerr P.F., 1960. Infrared study of the carbonate minerals.American Mineralogist, 45, 311-324.
Huang Y., Yao Q., Li H., Wang F., Zhou G., Fu S., 2019. Aerobically incubated bacterial biomass-promoted formation of disordered dolomite and implication for dolomite formation.Chemical Geology, 523, 19-30.
Kelleher I.J., Redfern S.A.T., 2002. Hydrous calcium magnesium carbonate, a possible precursor to the formation of sedimentary dolomite.Molecular Simulation, 28, 557-572.
Kenward P.A., Fowle D.A., Goldstein H.R., Ueshima M., Gonzalez A.L., Roberts A.J., 2013. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls.AAPG Bulletin, 97, 2113-2125.
Krause S., Liebetrau V., Gorb S., Sánchez-Román M., McKenzie A.J., Treude T., 2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma.Geology, 40, 587-590.
Land L.S.,1985. The Origin of massive Dolomite.Journal of Geological Education, 33, 112-125.
Land L.S.,1998. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years.Aquatic Geochemistry, 4, 361-368.
Lanyi J.K.,1974. Salt-dependent properties of proteins from extremely halophilic bacteria.Bacteriological Reviews, 38, 272-290.
Li J., Benzerara K., Bernard S., Beyssac O., 2013. The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies.Chemical Geology, 359, 49-69.
Lippmann F.,1973. Crystal chemistry of sedimentary carbonate minerals. In: Lippmann, F. (Ed.), Sedimentary Carbonate Minerals. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 5-96.
Lippmann F.,1982. Stable and metastable solubility diagrams for the system CaCO3-MgCO3-H2O at ordinary temperature.Bulletin de Mineralogie, 105, 273-279.
Liu D., Fan Q., Papineau D., Yu N., Chu Y., Wang H., Qiu X., Wang X., 2020a. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances.Chemical Geology, 533, 119415.
Liu D., Xu Y., Yu Q., Yu N., Qiu X., Wang H., Papineau D., 2020b. Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: Implications for sedimentary dolomite formation.Journal of Asian Earth Sciences, 193, 104301.
Liu D., Yu N., Papineau D., Fan Q., Wang H., Qiu X., She Z., Luo G., 2019. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China.Geochimica et Cosmochimica Acta, 263, 31-49.
Lloyd M.K., Ryb U., Eiler J.M., 2018. Experimental calibration of clumped isotope reordering in dolomite.Geochimica et Cosmochimica Acta, 242, 1-20.
Malone M.J., Baker P.A., Burns S.J., 1996. Recrystallization of dolomite: An experimental study from 50-200 ℃.Geochimica et Cosmochimica Acta, 60, 2189-2207.
McGregor G.B., Rasmussen J.P., 2008. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation.FEMS Microbiology Ecology, 63, 23-35.
Min X., Hua H., Liu L., Sun B., Cui Z., Dai Q., 2020. A diverse calcified cyanobacteria assemblage in the latest Ediacaran.Precambrian Research, 342, 105669.
Newman D.K., Neubauer C., Ricci J.N., Wu C.-H., Pearson A., 2016. Cellular and molecular biological approaches to interpreting ancient biomarkers.Annual Review of Earth and Planetary Sciences, 44, 493-522.
Obst M., Dynes J.J., Lawrence J.R., Swerhone G.D.W., Benzerara K., Karunakaran C., Kaznatcheev K.,Tyliszczak T., Hitchcock A.P., 2009. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process.Geochimica et Cosmochimica Acta, 73, 4180-4198.
Pan J., Zhao H., Tucker M.E., Zhou J., Jiang M., Wang Y., Zhao Y., Sun B., Han Z., Yan H., 2019. Biomineralization of monohydrocalcite induced by the halophileHalomonas Smyrnensis WMS-3. Minerals, 9, 632.
Pancost R.D., Zhang C., Tavacoli J., Talbot H.M., Farrimond P., Schouten S., Damsté J.S.S., Sassen R., 2005. Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico.Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 48-66.
Paulo C., Dittrich M., 2013. 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar).Journal of Raman Spectroscopy, 44, 1563-1569.
Paulo, C. MacKenzie J.A., Raoof B., Bollmann J., Fulthorpe R., Strohmenger C.J., Dittrich M., 2020. Organomineralization of proto-dolomite by a phototrophic microbial mat extracellular polymeric substances: Control of crystal size and its implication for carbonate depositional systems.American Journal of Science, 320, 72-95.
Perri E., Tucker M., 2007. Bacterial fossils and microbial dolomite in Triassic stromatolites.Geology, 35, 207-210.
Petrash D.A., Bialik O.M., Bontognali T.R.R., Vasconcelos C., Roberts J.A., McKenzie J.A., Konhauser K.O., 2017. Microbially catalyzed dolomite formation: From near-surface to burial.Earth-Science Reviews, 171, 558-582.
Pina C.M., Pimentel C., Crespo Á., 2022. The dolomite problem: A matter of time.ACS Earth and Space Chemistry, 6, 1468-1471.
Pratt B.R.,2001. Calcification of cyanobacterial filaments:Girvanella and the origin of lower Paleozoic lime mud. Geology, 29, 763-766.
Qiu X., Wang H., Yao Y., Duan Y., 2017. High salinity facilitates dolomite precipitation mediated byHaloferax volcanii DS52. Earth and Planetary Science Letters, 472, 197-205.
Ram S., Tirkey S.R., Bharadwaj V.S.V., Ghosh A., Mishra S., 2020. Utilization ofLeptolyngbya boryana mat for modulating nutrient uptake and its translocation in rice (Oryza sativa). Bioresource Technology Reports, 12, 100575.
Rao J.M., Argos P., 1981. Structural stability of halophilic proteins.Biochemistry, 20, 6536-6543.
Riding R.,2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms.Sedimentology, 47, 179-214.
Roberts J.A., Kenward P.A., 2011. Dolomite, Microbial. In: Reitner, J., Thiel, V. (Eds.), Encyclopedia of Geobiology. Springer Netherlands, Dordrecht, pp. 336-340.
Roberts J.A., Kenward P.A., Fowle D.A., Goldstein R.H., González L.A., Moore D.S., 2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature.Proceedings of the National Academy of Sciences, 110, 14540-14545.
Rodriguez-Blanco J.D., Shaw S., Benning L.G., 2015. A route for the direct crystallization of dolomite.American Mineralogist, 100, 1172-1181.
Rodriguez-Blanco J.D., Shaw S., Bots P., Roncal-Herrero T., Benning L.G., 2014. The role of Mg in the crystallization of monohydrocalcite.Geochimica et Cosmochimica Acta, 127, 204-220.
Sánchez-Román M., Fernández-Remolar D., Amils R., Sánchez-Navas A., Schmid T., Martin-Uriz P.S., Rodríguez N., McKenzie J.A., Vasconcelos C., 2014. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions.Scientific Reports, 4, 4767.
Sánchez-Román M., McKenzie J.A., de Luca Rebello Wagener, A., Rivadeneyra M.A., Vasconcelos C., 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation.Earth and Planetary Science Letters, 285, 131-139.
Sánchez-Román M., Vasconcelos C., Schmid T., Dittrich M., McKenzie J.A., Zenobi Renato., Rivadeneyra M.A., 2008. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record.Geology, 36, 879-882.
Scheller E.L., Grotzinger J., Ingalls M., 2022. Guttulatic calcite: A carbonate microtexture that reveals frigid formation conditions.Geology, 50, 48-53.
Schmidt M., Xeflide S., Botz R., Mann S., 2005. Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation.Geochimica et Cosmochimica Acta, 69, 4665-4674.
Shen Z., Szlufarska I., Brown P.E., Xu H., 2015. Investigation of the role of polysaccharide in the dolomite growth at low temperature by using atomistic simulations.Langmuir, 31, 10435-10442.
Vasconcelos C., McKenzie J.A., 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67, 378-390.
Vasconcelos C., McKenzie J.A., Bernasconi S., Grujic D., Tiens A.J., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures.Nature, 377, 220-222.
Vasconcelos C., Warthmann R., McKenzie J.A., Visscher P.T., Bittermann A.G., van Lith Y., 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?Sedimentary Geology, 185, 175-183.
Warren J.,2000. Dolomite: occurrence, evolution and economically important associations.Earth-Science Reviews, 52, 1-81.
Warthmann R., van Lith Y., Vasconcelos C.g., McKenzie J.A., Karpoff A.M., 2000. Bacterially induced dolomite precipitation in anoxic culture experiments.Geology, 28, 1091-1094.
Wright D.T.,1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia.Sedimentary Geology, 126, 147-157.
Wright D.T., Glenn C.R., Prévôt-Lucas, L., Lucas, J., 2000. Benthic microbial Communities and dolomite formation in marine and lacustrine environments - A new Dolomite model. In: Craig, R.G., Liliane, P., Jacques, L. (Eds), Marine Authigenesis: From Global to Microbial. SEPM Society for Sedimentary Geology, pp. 7-20.
Wright D.T., Wacey D., 2005. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications.Sedimentology, 52, 987-1008.
Xu J., Yan C., Zhang F., Konishi H., Xu H., Teng H.H., 2013. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems.Proceedings of the National Academy of Sciences, 110, 17750-17755.
You X., Sun S., Zhu J., Li Q., Hu W., Dong H., 2013. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: implications for the role of organic substrate on dolomite precipitation.Terra Nova, 25, 387-395.
Yuan Y., Shi X., Tang D., Shi Q., Li Y., 2022. Microfabrics and organominerals as indicator of microbial dolomite in deep time: An example from the Mesoproterozoic of North China.Precambrian Research, 382, 106881.
Zhang F., Xu H., Konishi H., Shelobolina E.S., Roden E.E., 2012. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite.American Mineralogist, 97, 556-567.
Zhang F., Xu H., Shelobolina E.S., Konishi Hiromi., Converse B., Shen Z., Roden E.E., 2015. The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: Implications for the “dolomite problem”.American Mineralogist, 100, 483-494.
Zhao, Y. Han Z., Yan H., Zhao H., Tucker M.E., Gao X., Guo N., Meng R., Owusu D.C., 2021. Selective adsorption of amino acids in crystals of monohydrocalcite induced by the facultative anaerobicEnterobacter ludwigii SYB1. Frontiers in Microbiology, 12, 696557.
Zhao Y., Wei X., Gao X., Li J., Zhang Y., Hu K., Han C., Wang Q., Han Z., 2024. Proto-dolomite spherulites with heterogeneous interior precipitated in brackish water cultivation of freshwater cyanobacteriumLeptolyngbya boryana. Science of The Total Environment, 906, 167552.
Zhao Y., Wei X., Han Z., Han C., Gao X., Meng R., Wang Q., Tucker M.E., Li M., Sánchez-Román M., 2023. Lacustrine-evaporitic microbial dolomite from a Plio-Pleistocene succession recovered by the SG-1 borehole in the Qaidam Basin, NE Tibetan Plateau.Chemical Geology, 622, 121376.
Zhao Y., Yan H., Zhou J., Tucker M.E., Han M., Zhao H., Mao G., Zhao Y., Han Z., 2019. Bio-Precipitation of calcium and magnesium ions through extracellular and intracellular process induced byBacillus Licheniformis SRB2. Minerals, 9, 526.
Zheng W., Liu D., Yang S., Fan Q., Papineau D., Wang H., Qiu X., Chang B., She Z., 2021. Transformation of protodolomite to dolomite proceeds under dry-heating conditions.Earth and Planetary Science Letters, 576, 117249.
Zhou Y., Yang F., Ji Y., Zhou X., Zhang C., 2020. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China.Precambrian Research, 343, 105708. |