Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean: Case studies from terrestrial and marine sites
Maria V. Triantaphyllou*
Faculty of Geology and Geoenvironment, University of Athens, Panepistimioupolis Zografou, 157-84 Athens, Greece
The distribution and abundance of Emiliania huxleyi (E. huxleyi) assemblages in the marine sediments of the Aravonitsa Plateau, Greece, and from the eastern Mediterranean are used (1) to evaluate the calcareous nannoplankton NN21a and NN21b biozones and the NN21a/NN21b boundary, and (2) to analyze the palaeoenvironmental and palaeoclimatic conditions prevailing in this interval. The sediment succession displays varied E. huxleyi assemblages and these are interpreted as reflecting climatic variability during marine isotope stages MIS 1-8.
Maria V. Triantaphyllou. Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean: Case studies from terrestrial and marine sites[J]. Journal of Palaeogeography, 2015, 4(4): 349-357.
Maria V. Triantaphyllou. Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean: Case studies from terrestrial and marine sites[J]. Journal of Palaeogeography, 2015, 4(4): 349-357.
.Ahagon, N., Tanaka, Y., Ujiie, H., 1993. Florisphaera profunda, a possible nannoplankton indicator of Late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 22(3), 255-273.
[2]
.Anastasakis, G., Pe-Piper, G., 2006. An 18 m thick volcaniclastic interval in Pantelleria Trough, Sicily Channel, deposited from a large gravitative flow during the Green Tuff eruption. Marine Geology, 231(1-4), 201-219.
[3]
.Black, M., Barnes, B., 1961. Coccoliths and discoasters from the floor of the South Atlantic Ocean. Journal of the Royal Microscopical Society, 80(2), 137-147.
[4]
.Bollmann, J., Herrle, J. O., 2007. Morphological variation of Emiliania huxleyi and sea surface salinity. Earth and Planetary Science Letters, 255(3-4), 273-288.
[5]
.Braarud, T., Gaarder, K. R., Markali, J., Nordli, E., 1952. Coccolithophorids studied in the electron microscope. Observations on Coccolithus huxleyi and Syracosphaera carterae. Nytt Magasin for Botanikk, 1, 129-134.
[6]
.Castradori, D., 1993. Calcareous nannofossil biostratigraphy and biochronology in eastern Mediterranean deep-sea cores. Rivista Italiana di Paleontologia e Stratigrafia, 99(1), 107-126.
[7]
.Corselli, C., Principato, M. S., Maffioli, P., Crudeli, D., 2002. Changes in planktonic assemblages during sapropel S5 deposition: Evidence from Urania Basin area, eastern Mediterranean. Paleoceanography, 17(3), 1-30.
[8]
.Deflandre, G., Fert, C., 1954. Observations sur les coccolithophoridés actuels et fossiles en microscopie ordinaire et électronique. Annales de Paléontologie, 40, 115-176 (in French).
[9]
.Dimiza, M. D., Triantaphyllou, M. V., Dermitzakis, M. D., 2008. Seasonality and ecology of living coccolithophores in eastern Mediterranean coastal environment (Andros Island, Middle Aegean Sea). Micropaleontology, 54(2), 159-175.
[10]
Flores, J. A., Sierro, F. J., Francés, G., Vázquez, A., Zamarre��o, I., 1997. The last 100,000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. Marine Micropaleontology, 29(3-4), 351-366.
[11]
Gallagher, L., 1989. Reticulofenestra: A critical review of taxonomy, structure and evolution, in: Crux, J. A., van Heck, S.E. (Eds.), Nannofossils and Their Applications. Ellis Horwood Ltd., Chichester, pp. 41-75.
[12]
Gartner, S., Emiliani, C., 1976. Nannofossil biostratigraphy and climatic stages of Pleistocene Brunhes Epoch. AAPG Bulletin, 60(9), 1562-1564.
[13]
Hills, S. J., Thierstein, H. R., 1989. Plio-Pleistocene calcareous plankton biochronology. Marine Micropaleontology, 14(1-3), 67-96.
[14]
Incarbona, A., Di Stefano, E., Bonomo, S., 2009. Calcareous nannofossil biostratigraphy of the central Mediterranean Basin during the last 430 000 years. Stratigraphy, 6, 33-44.
[15]
Ioakim, C., Triantaphyllou, M., Tsaila-Monopolis, S., Geraga, M., Dimiza, M., Lykousis, V., 2009. New micropalaeontological records of eastern Mediterranean marine sequences recovered offshore of Crete, during HERMES cruise and their palaeoclimatic-palaeoceanographic significance. Acta Naturalia de "L’Ateneo parmense", 45, 152.
[16]
Katsouras, G., Gogou, A., Bouloubassi, I., Emeis, K. C., Triantaphyllou, M., Roussakis, G., Lykousis, V., 2010. Organic carbon distribution and isotopic composition in three records from the eastern Mediterranean Sea during the Holocene. Organic Geochemistry, 41(9), 935-939.
[17]
Kroon, D., Alexander, I., Little, M., Lourens, L. J., Matthewson, A., Robertson, A. H. F., Sakamoto, T., 1998. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. Proceedings of the Ocean Drilling Program, Scientific Results, 160(Chapter 14), 181-189.
[18]
Lohmann, H., 1902. Die Coccolithophoridae: eine Monographie der Coccolithen bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des Mittelmeerauftriebs. Archiv für Protistenkunde, 1, 89-165 (in German).
[19]
Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J., Wilson, D., 2005. The Neogene Period, in: Gradstein, F. M., Ogg, J.G., Smith, A. G. (Eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 409-440.
[20]
Malanotte-Rizzoli, P., Manca, B. B., D’Alcalà, M. R., Theocharis, A., Bergamasco, A., Bregant, D., Budillon, G., Civitarese, G., Georgopoulos, D., Michelato, A., Sansone, E., Scarazzato, P., Souvermezoglou, E., 1997. A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I. Progress in Oceanography, 39(3), 153-204.
[21]
Malinverno, E., Triantaphyllou, M. V., Stavrakakis, S., Ziveri, P., Lykousis, V., 2009. Seasonal and spatial variability of coccolithophore export production at the south-western margin of Crete (eastern Mediterranean). Marine micropaleontology, 71(3), 131-147.
[22]
Malinverno, E., Maffioli, P., Corselli, C., De Lange, G. J., 2014. Present-day fluxes of coccolithophores and diatoms in the pelagic Ionian Sea. Journal of Marine Systems, 132, 13-27.
[23]
Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Farinacci, A. (Ed.), Proceedings of the Second Planktonic Conference. Technoscienza, Roma, pp. 739-785.
[24]
Negri, A., Giunta, S., 2001. Calcareous nannofossil paleoecology in the sapropel S1 of the eastern Ionian Sea: Paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1-2), 101-112.
[25]
Okada, H., Honjo, S., 1975. Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Marine Biology, 31(3), 271-285.
[26]
Paasche, E., 1998. Roles of nitrogen sand phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology, 33(1), 33-42.
[27]
Paasche, E., 2001. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia, 40(6), 503-529.
[28]
Palyvos, N., Mancini, M., Sorel, D., Lemeille, F., Pantosti, D., Julia, R., Triantaphyllou, M., De Martini, P. M., 2010. Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geological Journal, 45(1), 78-104.
[29]
Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils, in: Bolli, H. M., Saunders, J. B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, pp. 427-554.
[30]
Raffi, I., 2002. Revision of the Early-Middle Pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma). Marine Micropaleontology, 45(1), 25-55.
[31]
Raffi, I., Backman, J., Fornaciari, E., P?like, H., Rio, D., Lourens, L., Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25(23), 3113-3137.
[32]
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., Morel, F. M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407(6802), 364-367.
[33]
Rio, D., Raffi, I., Villa, G., 1990. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. Proceedings of the Ocean Drilling Program, Scientific Results, 107, 513-533.
[34]
Rohling, E. J., Cane, T. R., Cooke, S., Sprovieri, M., Bouloubassi, I., Emeis, K. C., Schiebel, R., Kroon, D., Jorissen, F.J., Lorre, A., Kemp, A. E. S., 2002. African monsoon variability during the previous interglacial maximum. Earth and Planetary Science Letters, 202(1), 61-75.
[35]
Romein, A. J. T., 1979. Lineages in Early Paleogene calcareous nannoplankton. Utrecht Micropaleontological Bulletins, 22, 1-231.
[36]
Rost, B., Riebesell, U., 2004. Coccolithophores and the biological pump: Responses to environmental changes, in: Thierstein, H. R., Young, J. R. (Eds.), Coccolithophores: From Molecular Processes to Global Impact. Springer, Berlin, pp. 99-125.
[37]
Samtleben, C., 1980. Die Evolution der Coccolithophoriden-Gattung Gephyrocapsa nach Befunden im Atlantik. Pal?ontologische Zeitschrift, 54(1-2), 91-127 (in German).
[38]
Shackleton, N. J., Pisias, N. G., 1985. Atmospheric carbon dioxide, orbital forcing, and climate, in: Sundquist, E. T., Broecker, W. S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union Geophysical Monograph Series, 32, 303-317.
[39]
Siddall, M., Chappell, J., Potter, E. K., 2007. Eustatic sea level during past interglacials, in: Sirocko, F., Claussen, M., Sanchez-Goni, M. F., Litt, T. (Eds.), The Climate of Past Interglacials. Developments in Quaternary Sciences, 7, 75-92.
[40]
Thierstein, H. R., Geitzenauer, K. R., Molfino, B., Shackleton, N. J., 1977. Global synchroneity of Late Quaternary coccolith datum levels validation by oxygen isotopes. Geology, 5(7), 400-404. 2.0.CO;2 target="_blank">
[41]
Triantaphyllou, M. V., Ziveri, P., Tselepides, A., 2004. Coccolithophore export production and response to seasonal surface water variability in the oligotrophic Cretan Sea (NE Mediterranean). Micropaleontology, 50(1), 127-144.
[42]
Triantaphyllou, M. V., Ziveri, P., Gogou, A., Marino, G., Lykousis, V., Bouloubassi, I., Emeis, K. C., Kouli, K., Dimiza, M., Rosell-Melé, A., Papanikolaou, M., Katsouras, G., Nunez, N., 2009. Late Glacial-Holocene climate variability at the south-eastern margin of the Aegean Sea. Marine Geology, 266(1-4), 182-197.
[43]
Triantaphyllou, M. V., Antonarakou, A., Dimiza, M., Anagnostou, C., 2010a. Calcareous nannofossil and planktonic foraminiferal distributional patterns during deposition of sapropels S6, S5 and S1 in the Libyan Sea (eastern Mediterranean). Geo-Marine Letters, 30(1), 1-13.
[44]
Triantaphyllou, M. V., Dimiza, M., Krasakopoulou, E., Malinverno, E., Lianou, V., Souvermezoglou, E., 2010b. Seasonal variation in Emiliania huxleyi coccolith morphology and calcification in the Aegean Sea (eastern Mediterranean). Geobios, 43(1), 99-110.
[45]
Triantaphyllou, M. V., Gogou, A., Bouloubassi, I., Dimiza, M., Kouli, K., Rousakis, G., Kotthoff, U., Emeis, K. C., Papanikolaou, M., Athanasiou, M., 2014. Evidence for a warm and humid Mid-Holocene episode in the Aegean and northern Levantine Seas (Greece, NE Mediterranean). Regional Environmental Change, 14(5), 1697-1712.
[46]
Tyrrell, T., Merico, A., 2004. Emiliania huxleyi: Bloom observations and the conditions that induce them, in: Thierstein, H. R., Young, J. R. (Eds.), Coccolithophores: From Molecular Processes to Global Impact. Springer, Berlin, pp. 75-97.
[47]
Underhill, J. R., 2006. Quest for Ithaca. Geoscientist, 16(9), 4-29.
[48]
Underhill, J. R., 2008. Testing classical enigmas. Geoscientist, 18(9), 20-27.
[49]
Violanti, D., Grecchi, G., Castradori, D., 1991. Paleoenvironmental interpretation of Core BAN88-11GC (eastern Mediterranean, Pleistocene-Holocene) on the grounds of Foraminifera, Thecosomata and calcareous nannofossils. Il Quaternario, 4(1a), 13-39.
[50]
Watabe, N., Wilbur, K. M., 1966. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnology and Oceanography, 11(4), 567-575.
[51]
Winter, A., Jordan, R. W., Roth, P. H., 1994. Biogeography of living coccolithophores in ocean waters, in: Winter, A., Siesser, W. G. (Eds.), Coccolithophores. Cambridge University Press, Cambridge, pp. 161-177.
[52]
Young, J. R., 1994. Functions of coccoliths, in: Winter, A., Siesser, W. G. (Eds.), Coccolithophores. Cambridge University Press, Cambridge, pp. 63-82.
[53]
Young, J. R., Westbroek, P., 1991. Genotypic variation in the coccolithophorid species Emiliania huxleyi. Marine Micropaleontology, 18(1), 5-23.
[54]
Young, J. R., Didymus, J. M., Brown, P. R., Prins, B., Mann, S., 1992. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 356(6369), 516-518.
[55]
Young, J. R., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., ?stergaard, J. B., 2003. A guide to extant calcareous nannoplankton taxonomy. Journal of Nannoplankton Research, (Special Issue 1), 1-125.
[56]
Ziveri, P., Rutten, A., de Lange, G. J., Thomson, J., Corselli, C., 2000. Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 158(3-4), 175-195.