Microbial mat-related structures shared by both siliciclastic and carbonate formations
Subir Sarkara,*, Adrita Choudhuria, Sunipa Mandala, Patrick G. Erikssonb
a Department of Geological Sciences, Jadavpur University, Kolkata 700032, India; b Department of Geology, University of Pretoria, Pretoria 0002, South Africa
Microbiota has always been the dominant life form, records of which are preserved in delicate forms within siliciclastic rocks. More pronounced record in the form of stromatolites possibly obscured the fact that many of the same delicate structures may be recognizable within carbonate rocks too. The Neoproterozoic Bhander Limestone in central India bears many such structures that are quintessentially similar to microbial mat-related structures reported from the Paleoproterozoic Chorhat Sandstone preserved within the same, Vindhyan Basin. Extensive microscopic, ultramicroscopic, and geochemical studies address the apprehension that such bedding plane structures in carbonate rocks could be merely weathering products. Trapping, binding and stabilitization of sediment by microbial mats are all evident. Preferred pyritization along the inferred, prede?ned microbial mats con?rmed on the basis of EPMA (Electron Probe Microanalysis) results, and the enhanced carbon content along these mats layers and within suspected mat chips associated with them, are revealing. Raman spectroscopy, indeed, evinces enhanced kerogen content within both mats and mat chips.Interestingly, these microbial mat layers are recognized selectively within the lower of the two tiers of the Bhander Limestone. The lagoonal carbonate of the lower tier of the Bhander Limestone is muddy and contains a substantial proportion of silt-sized quartz grains that possibly impeded stromatolite growth. Stromatolites abound in the wave agitated upper tier of the Bhander Limestone which is dominated by oosparite. This paper provides evidence that the delicate microbial mat-related structures reported so far only from siliciclastic rocks can also be recognized within carbonate formations, and hopes to stimulate the search for additional such features, more preferably within carbonates originated in shallow and quiet water.
Banerjee, S., Jeevankumar, S., 2005. Microbially originated wrinkle structures on sandstones and their stratigraphic context: Paleoproterozoic Koldaha Shale, central India. Sedimentary Geology, 176, 211-224.
[2]
Banerjee, S., Sarkar, S., Eriksson, P.G., Samanta, P., 2010. Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: examples from India, ancient and modern. In: Seckbach, J., Oren, A. (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Strati?ed Systems. Springer-Verlag, Berlin, pp. 111-129.
[3]
Banerjee, S., Sarkar, S., Eriksson, P.G., 2014. Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: examples from modern Gulf of Cambay and Precambrian Vindhyan basin. Journal of Palaeogeography, 3(2), 127-144.
[4]
Basu, A., Bickford, M.E., 2014. Contributions of Zircon U-Pb geochronology to understanding the volcanic and sedimentary history of some Purana basins, India. Journal of Asian Earth Sciences, 91, 252-262.
[5]
Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4), 605-615.
[6]
Bose, P.K., Sarkar, S., Banerjee, S., Chakraborty, S., 2007. Mat-related features from sandstones of the Vindhyan Supergroup in central India. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Elsevier, Amsterdam, pp. 181-188.
[7]
Bose, P.K., Sarkar, S., Chakraborty, S., Banerjee, S., 2001. Overview of the Meso- to Neoproterozoic evolution of the Vindhyan Basin, central India. Sedimentary Geology, 141, 395-419.
[8]
Bottjer, D., Hagadorn, J.W., 2007. Mat growth features. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, Atlases in Geoscience 2. Elsevier, Amsterdam, pp. 53-71.
[9]
Bouougri, E., Porada, H., 2002. Mat related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton. Sedimentary Geology, 153, 85-106.
[10]
Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography Marine Biology: An Annual Review, 28, 73-154.
[11]
Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., Visscher, P.T., 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162.
[12]
Dupraz, C., Vischer, P.T., 2005. Microbial lithi?cation in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429-438.
[13]
Eriksson, P.G., Sarkar, S., Samanta, P., Banerjee, S., Porada, H., Catuneanu, O., 2010. Paleoenvironmental context of microbial mat-related structures in siliciclastic rocks. In: Seckbach, J., Oren, A. (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Strati?ed Systems, Cellular Origin, Life in Extreme Habitats and Astrobiology, 14. Springer, pp. 71-108.
[14]
Eriksson, P.G., Simpson, E.L., Eriksson, K.A., Bumby, A.J., Steyn, G.L., Sarkar, S., 2000. Muddy roll-up structures in siliciclastic interdune beds of the ca. 1.8 Ga Waterberg Group, South Africa. Palaios, 15, 177-183.
[15]
Gehling, J.G., 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14, 40-57. Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47, 279-308.
[16]
Gopalan, K., Kumar, A., Kumar, S., Vijayagopal, B., 2013. Depositional history of the Upper Vindhyan succession, central India: time constraint from Pb-Pb isochron ages of its carbonate components. Precambrian Research, 233, 103-117.
[17]
Hagadorn, J.W., Bottjer, D.J., 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25, 1047-1050.
[18]
Hagadorn, J.W., Bottjer, D.J., 1999. Restriction of a Late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios, 14, 73-85.
[19]
Luo, M., Chen, Z., Hu, S., Zhang, Q., Benton, M.J., Zhou, C., Wen, W., Huang, J., 2013. Carbonate reticulated ridge structures from the lower Middle Triassic of the Luoping Area, Yunnan, south western China: geobiologic features and implications for exceptional preservation of the Luoping biota. Palaios, 28, 541-551.
[20]
Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R., Sohl, L.E., 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana basins? Precambrian Research, 164, 137-159.
[21]
Marshall, C.P., Edwards, H.G.M., Jehlicka, J., 2010. Understanding the application of Raman spectroscopy to the detection of traces of Life. Astrobiology, 10, 229-243.
[22]
Noffke, N., 2000. Extensive microbial mats and their in?uences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noir, France). Sedimentary Geology, 136, 207-215.
[23]
Noffke, N., Awramik, S.M., 2013. Stromatolites and MISS — Differences between relatives. GSA Today, 23, 4-9.
[24]
Noffke, N., Christian, D., Wacey, D., Hazen, R.M., 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, western Australia. Astrobiology, 13, 1103-1124.
[25]
Noffke, N., Gerdes, G., Klenke, T., 2003. Benthic cyanobacteria and their in?uence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporiticsalty, and evaporitic carbonatic). Earth-Science Reviews, 62, 163-176.
[26]
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W.E., 2001. Microbially induced sedimentary structures — A new category within the classi?cation of primary sedimentary structures. Journal of Sedimentary Research, 71, 649-656.
[27]
Parizot, M., Eriksson, P.G., Aifa, T., Sarkar, S., Banerjee, S., Catuneanu, O., Altermann, W., Bumby, A.J., Bordy, E.M., Rooy, J.L.V., Boshoff, A.J., 2005. Microbial mat-related crack-like sedimentary structures in the ca. 2.1 Ga Magaliesberg formation sandstones, South Africa. Precambrian Research, 138, 274-296.
P?üger, F., Sarkar, S., 1996. Precambrian bedding planes bound to remain. Geological Society of America Abstract with Programs, 28, 491.
[31]
Plummer, P.S., Gostin, V.A., 1981. Shrinkage cracks: desiccation or synaeresis. Journal of Sedimentary Petrology, 51, 1147-1156.
[32]
Porada, H., Bouougri, E., 2007. “Wrinkle structures” — A critical review. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Elsevier, Amsterdam, pp. 135-144.
[33]
Prave, A.R., 2002. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology, 30, 811-814.
Fletcher, I.R., Mc Naughton, N.J., 2002. 1.6 Ga U-Pb zircon ages for the Chorhat Sandstone, Lower Vindhyan, India: possible implication for early evolution of animals. Geology, 30, 103-106.
[36]
Ray, J.S., 2006. Age of the Vindhyan Supergroup: a review of recent ?ndings. Journal of Earth System Science, 115, 149-160.
[37]
Ray, J.S., Martin, M.W., Veizer, J., 2002. U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology, 30, 131-134.
[38]
Samanta, P., Mukhopadhyay, S., Mondal, A., Sarkar, S., 2011. Microbial mat structures in pro?le: the Neoproterozoic Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Sciences, 40, 542-549.
[39]
Sarkar, S., Banerjee, S., Bose, P.K., 1996. Trace fossils in the Mesoproterozoic Koldaha Shale, central India, and their implications. Neues Jahrbuch für Geologie und Palaontologie, Monastshefte, 7, 425-438.
[40]
Sarkar, S., Banerjee, S., Eriksson, P.G., 2004. Microbial mat features in sandstones illustrated. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 673-675.
[41]
Sarkar, S., Banerjee, S., Samanta, P., Chakraborty, N., Mukhopadhyay, S., Chakraborty, P., Singh, A., 2014a. Microbial mat records in siliciclastic rocks: examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. Journal of Asian Earth Sciences, 91, 362-377.
[42]
Sarkar, S., Banerjee, S., Samanta, P., Jeevankumar, S., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P., India. Journal of Earth System Science, 115, 49-60.
[43]
Sarkar, S., Bose, P.K., Samanta, P., Sengupta, P., Eriksson, P.G., 2008. Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Research, 162, 248-263.
[44]
Sarkar, S., Choudhuri, A., Banerjee, S., Van Loon, A.J., Bose, P.K., 2014b. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India. Geologos, 20, 79-93.
[45]
Sarkar, S., Samanta, P., Altermann, W., 2011. Setulfs, modern and ancient: formative mechanism, preservation bias and palaeoenvironmental implications. Sedimentary Geology, 238, 71-78.
[46]
Schieber, J., 1986. The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins. Sedimentology, 33, 521-536.
[47]
Schieber, J., 1998. Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, USA. Sedimentary Geology, 120, 105-124.
[48]
Schieber, J., 1999. Microbial mats in terrigenous clastics: the challenge of identi?cation in the rock record. Palaios, 14, 3-12.
[49]
Schieber, J., 2004. Microbial mats in the siliciclastic rock record: A summary of the diagnostic features. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 663-673.
[50]
Schieber, J., 2007. Microbial mats on muddy substrates — Examples of possible sedimentary features. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record, Atlases in Geoscience 2. Elsevier, Amsterdam, pp. 117-133.
[51]
Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., 2007. Atlas of microbial mat features preserved within the siliciclastic rock record. In: Atlases in Geoscience 2. Elsevier, Amsterdam, p. 311.
[52]
Schopf, J.W., 1999. Cradle of Life: The Discovery of Earth's Earliest Fossils. Princeton University Press, Princeton, New Jersey, p. 367.
[53]
Seeong-Joo, L., Browne, K.M., Golubic, S., 2000. On stromatolite lamination. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer, New York, pp. 16-24.
[54]
Seilacher, A., Bose, P.K., P?üger, F., 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science, 282, 80-83.
[55]
Shi, X.Y., Zhang, C.H., Jiang, G.Q., Liu, J., Wang, Y., Liu, D.B., 2008. Microbial mats in the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon generation. Geoscience, 22(5), 669-682.
[56]
Vasconcelos, C., Warthmann, R., Mckenzie, J.A., Visscher, P.T., Bittermann, A.G., Van Lith, Y., 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? Sedimentary Geology, 185, 175-183.
[57]
Venkateshwarlu, M., Rao, J.M., 2013. Palaeomagnetism of Bhander sediments from Bhopal Inlier, Vindhyan Supergroup. Journal of the Geological Society of India, 81, 330-336.
[58]
Walcott, C.D., 1914. Cambrian geology and palaeontology III, no. 2: Precambrian, Algonkian algal ?ora. Smithsonian Miscellaneous Collection, 64, pp. 77-156.