a Department of Geological Sciences, Jadavpur University, Kolkata 700032, India; b Department of Geology, University of Pretoria, Pretoria 0002, South Africa
The extraordinary lateral continuity of isopachous stromatolite laminae in the ~87 m-thick Mesoproterozoic Lakshanhatti Dolomite (India) evinces chemical precipitation. Fan-shaped crystals grown on lamina surfaces further corroborate this contention; growth of fan-shaped crystals under the overhanging stromatolite column-margin indicates direct carbonate precipitation from ambient waters. The fan-shaped crystals are stacked up, separated only by thin dark micritic laminae. In a relatively upper stratigraphic interval of the formation, lighter laminae characterized by a clotted texture and traversed by numerous winding tubular voids change gradually upwards into dark micritic laminae. Some sporadically distributed lenticular intraclastic beds also have the similarly dark micritic coatings.Clear carbonate cement crusts also occur between laminae and between successive dark micritic coats around intraclasts. Dull cathodoluminescence (CL) characterizes this cement as well as the cement lining within early diagenetic voids. In contrast, the laminae with clotted textures show dirty orange luminescence, while the dark micritic laminae and the dark micritic grain-coats display clear bright orange luminescence. Pyrite and its pseudomorphs are preferably concentrated along the dark micritic laminae. Carbon content in these dark micritic components, whether laminae or coats, is much higher than in the lighter components, exceeding what can be accounted for their CaMg(CO3)2 composition. A large part of this carbon is kerogen, plausibly biogenic. The dark components are, therefore, reasonably, though not unequivocally, assumed to be microbial mats. Degradation of the mats might have given rise to the light laminae with clotted textures. The fuzzy-margin tubes within the light laminae probably manifest the escape of gases generated during organic matter decomposition.Si–Al-rich terrigenous ?nes thinly draping the dark carbonaceous laminae was possibly the result of baf?ing and trapping of terrigenous ?nes by ?lamentous microbiota. Dark carbonaceous laminae encasing intraclasts was considered to be the result of binding and stabilization by microbiota. Spike-like growth of discrete laminae strongly suggests an occasional breakdown of colonial homeostasis of phototrophic microbiota. The microbial community thus appears to have played an active role in stromatolite-building in the Lakshanhatti Dolomite Member, even though the simultaneous existence of direct carbonate precipitates from sea water indicates a hybrid origin of these stromatolites.Resting on shelf sandstone and being capped by dark offshore shale, the Lakshanhatti Dolomite had been deposited in distal offshore, but not at the great depth, perhaps in an epeiric sea. Progressive deepening inhibited direct carbonate precipitation. D13C and d18O values suggest normal open marine salinity during deposition.
Pope, M.C., Grotzinger, J.P., Schreiber, B.C., 2000. Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal signi?cance. Journal of Sedimentary Research, 70, 1139-1151.
[47]
Pratt, B.R., 1998. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology, 117, 1-10.
[1]
Allen, J.R.L., 1982. Sedimentary Structures: Their Character and Physical Basis, Volume I. In: Developments in Sedimentology, vol. 30A. Elsevier, Amsterdam, 593 pp.
[54]
Sarkar, S., Chakraborty, N., Mandal, A., Banerjee, S., Bose, P.K., 2014. Siliciclastic-carbonate mixing modes in the river-mouth bar palaeogeography of the Upper Cretaceous Garuda Mangalam Sandstone (Ariyalur, India). Journal of Palaeogeography, 3(3), 233-256.
[55]
Sarkar, S., Eriksson, P.G., Chakraborty, S., 2004. Epeiric sea formation on Neoproterozoic supercontinent break-up: a distinctive signature in coastal storm bed amalgamation. Gondwana Research, 7(2), 313-322.
[2]
Álvaro, J.J., Clausen, S., El Albani, A., El Hassane, C., 2005. Facies distribution of the Lower Cambrian cryptic microbial and epibenthic archaeocyathan-microbial communities, western Anti-Atlas, Morocco. Sedimentology, 53, 35-53.
[3]
Bhattacharya, H.N., Bandyopadhaya, S., 1998. Seismites in a Proterozoic tidal succession, Singbhum, Bihar, India. Sedimentary Geology, 119, 239-252.
[4]
Bose, P.K., Mazumder, R., Sarkar, S., 1997. Tidal sandwaves and related storm deposits in the transgressive Protoproterozoic Chaibasa Formation, India. Precambrian Research, 84, 63-91.
[48]
Pratt, B.R., Holmden, C., 2008. Dynamics of epeiric seas. Geological Association of Canada, Special Paper, 48, 406. Reis, O.M., 1908. Kalkowsky: Ueber Oolith und Stromatolith imnorddeutschen Buntsandstein. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 2, 114-138.
[49]
Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica, 61(2-3), 73-103.
[50]
Riding, R., 2011. Microbialites, stromatolites, and thrombo- lites. In: Reitner, J., Theil, V. (Eds.), Encyclopedia of Geobiology, Encyclopedia of Earth Science Series. Springer, Heidelberg, pp. 635-654.
[51]
Riding, R., Liang, L., 2005. Seawater chemistry control of marine limestone accumulation over the past 550 million years. Revista Española de Micropaleontología, 37(1), 1-11.
[52]
Robbins, L.L., Blackwelder, P.L., 1992. Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology, 20, 464-468.
[5]
Braga, J.C., Martín, J.M., 2000. Subaqueous siliciclastic stromatolites: a case history from Late Miocene beach deposits in the Sorbas Basin of SE Spain. In: Riding, R.W., Awramik, S.W. (Eds.), Microbial Sediments. Springer, Berlin, pp. 226-232.
[6]
Cojan, I., Thiry, M., 1992. Seismically induced deformation structures in Oligocene shallow-marine and eolian coastal sands (Paris Basin). Tectonophysics, 206, 79-89.
[7]
Draganits, E., Noffke, N., 2004. Siliciclastic stromatolites and other microbially induced sedimentary structures in an Early Devonian barrier-island environment (Muth Formation, NW Himalayas). Journal of Sedimentary Research, 74, 191-202.
[53]
Samanta, P., Mukhopadhyay, S., Mondal, A., Sarkar, S., 2011. Microbial mat structures in pro?le: the Neoproterozoic Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Sciences, 40, 542-549.
[8]
Eriksson, K.A., Truswell, J.F., 2006. Tidal ?at associations from a Lower Proterozoic carbonate sequence in South Africa. Sedimentology, 21, 193-309.
[54]
Sarkar, S., Chakraborty, N., Mandal, A., Banerjee, S., Bose, P.K., 2014. Siliciclastic-carbonate mixing modes in the river-mouth bar palaeogeography of the Upper Cretaceous Garuda Mangalam Sandstone (Ariyalur, India). Journal of Palaeogeography, 3(3), 233-256.
[55]
Sarkar, S., Eriksson, P.G., Chakraborty, S., 2004. Epeiric sea formation on Neoproterozoic supercontinent break-up: a distinctive signature in coastal storm bed amalgamation. Gondwana Research, 7(2), 313-322.
[9]
Gruszka, B., Van Loon, A.J., 2007. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). In: Gruszka, B., Van Loon, A.J., Zieli��ski, T. (Eds.), Quaternary Geology e Bridging the Gap between East and West, Sedimentary Geology, vol. 193, pp. 93-104.
[10]
Mallik, L., Mazumder, R., Mazumder, B.S., Arima, M., Chatterjee, P., 2012. Tidal rhythmites in offshore shale: a case study from the Palaeoproterozoic Chaibasa shale, eastern India and implications. Marine and Petroleum Geology, 30, 43-49.
[11]
Mazumder, R., 2005. Proterozoic sedimentation and volcanism in the Singhbhum province, India and their implications. Sedimentary Geology, 176, 167-193.
[12]
Mazumder, R., Van Loon, A.J., Arima, M., 2006. Soft-sediment deformation structures in the Earth's oldest seismites. Sedimentary Geology, 186, 19-26.
[56]
Schieber, J., 2007. Microbial mats on muddy substrates d examples of possible sedimentary features and underlying processes. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, Atlases in Geoscience, vol. 2, pp. 117-133.
[57]
Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., 2007. Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geoscience, 2, 1-311.
Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., Tripathi, A.B., 2005. Evidence of Archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155.
[91]
Flood, R.D., Piper, D.J.W., Klaus, A., Burns, S.J., Busch, W.H., Cisowski, S.M., Cramp, A., Damuth, J.E., Goni, M.A., Haberle, S.G., Hall, F.R., Hinrichs, K.-U., Hiscott, R.N., Kowsmann, R.O., Kronen Jr., J.D., Long, D., Lopez, M., McDaniel, D.K., Manley, P.L., Maslin, M.A., Mikkelsen, N., Nanayama, F., Normak, W.R., Pirmez, C., dos Santos, J.R., Schneider, R.R., Showers, W.J., Soh, W., Thibal, J., 1995. Proceedings of the Ocean Drilling Program. Ocean Drilling Program, College Station, Texas, p. 1233. Initial Reports 155.
[61]
Seeong-Joo, L., Browne, K.M., Golubic, S., 2000. On stromatolite lamination. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer, New York, pp. 16-24.
[56]
Schieber, J., 2007. Microbial mats on muddy substrates d examples of possible sedimentary features and underlying processes. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, Atlases in Geoscience, vol. 2, pp. 117-133.
[62]
Sharma, M., Pandey, S.K., 2012. Stromatolites of the Kaladgi Basin, Karnataka, India: systematics, biostratigraphy and age implications. The Palaeobotanist, 61, 103-121.
[63]
Soudry, D., 2000. Microbial phosphate sediment. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer-Verlag, Berlin Heidelberg, pp. 127-136.
[57]
Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., 2007. Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geoscience, 2, 1-311.
Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., Tripathi, A.B., 2005. Evidence of Archean life: stromatolites and microfossils. Precambrian Research, 158, 141-155.
[64]
Sumner, D.Y., 2002. Decimeter-thick encrustations of calcite and aragonite on the sea ?oor and implications for Neoarchean and Neoproterozoic ocean chemistry. In: Altermann, W., Corcoran, P.L. (Eds.), Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. IAS Special Publication, 33, pp. 107-120.
[65]
Sumner, D.Y., Grotzinger, J.P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51, 1-27.
[66]
Tang, D., Shi, X., Jiang, G., Zhang, W., 2013. Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales. Palaios, 28, 178-194.
[67]
Walter, M., 1996. Old fossils could be fractal frauds. Nature, 383(3), 385-386.
[13]
Mazumder, R., Rodríguez-López, J.P., Arima, M., Van Loon, A.J., 2009. Palaeoproterozoic seismites (?ne-grained facies of the Chaibasa Fm., E India) and their soft-sediment deformation structures. In: Reddy, S., Mazumder, R., Evans, D., Collins, A. (Eds.), Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications, 323, pp. 301-318.
[68]
Yin, J., Fürsich, F.T., Werner, W., 1995. Reconstruction of palaeosalinity using carbon isotopes and benthic associations: a comparison. Geologische Rundschau, 84, 223-236.
[61]
Seeong-Joo, L., Browne, K.M., Golubic, S., 2000. On stromatolite lamination. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer, New York, pp. 16-24.
[62]
Sharma, M., Pandey, S.K., 2012. Stromatolites of the Kaladgi Basin, Karnataka, India: systematics, biostratigraphy and age implications. The Palaeobotanist, 61, 103-121.
[92]
F��tterer, D.K., Kuhn, G., Schenke, H.W., 1990. Wegener Canyon bathymetry and results from rock dredging near ODP Sites 691�C693, Eastern Weddell Sea, Antarctica. In: Barker, P.R., Kennett, J.P., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 113. Ocean Drilling Program, College Station, TX, pp. 39�C50.
[63]
Soudry, D., 2000. Microbial phosphate sediment. In: Riding, R.E., Awramik, S.M. (Eds.), Microbial Sediments. Springer-Verlag, Berlin Heidelberg, pp. 127-136.
[93]
Gamberi, F., Rovere, M., 2011. Architecture of a modern transient slope fan (Villafranca fan, Gioia Basin, Southeastern Tyrrhenian Sea). Sedimentary Geology 236, 211�C225.
[94]
Gamberi, F., Rovere, M., Mercorella, A., Leidi, E., 2014. The influence of a lateral slope on turbidite lobe development on a modern deep-sea slope fan (Villafranca deep-sea fan, Tyrrhenian Sea). Journal of Sedimentary Research 84, 475�C486.
[95]
Gamberi, F., Rovere, M., Marani, M.P., Dykstra, M., 2015. Modern submarine canyon feeder-system and deep-sea fan growth in a tectonically active margin (northern Sicily). Geosphere 11, 307�C319.
[96]
Gao, Z.Z., He, Y.B., Li, X.D., Duan, T.Z., 2014. Reply to Shanmugam, G. ��Review of research in internal-wave and internal-tide deposits of China, discussion��. Journal of Palaeogeography. 3 (4), 351�C358.
[64]
Sumner, D.Y., 2002. Decimeter-thick encrustations of calcite and aragonite on the sea ?oor and implications for Neoarchean and Neoproterozoic ocean chemistry. In: Altermann, W., Corcoran, P.L. (Eds.), Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. IAS Special Publication, 33, pp. 107-120.
Sumner, D.Y., Grotzinger, J.P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51, 1-27.
[98]
Garc��a Lafuente, J.M., Cano Lucaya, N., 1994. Idal dynamics and associated features of the northwestern shelf of the Alboran Sea. Continental Shelf Research 14, 1�C21.
[14]
Mazumder, R., Eriksson, P.G., De, S., Bumby, A.J., Lenhardt, N., 2012. Palaeoproterozoic sedimentation on the Singhbhum craton: global context and comparison with Kaapvaal, Palaeoproterozoic of India. In: Mazumder, R., Saha, D. (Eds.), Palaeoproterozoic of India. Geological Society, London, Special Publications, 365, pp. 51-76.
[66]
Tang, D., Shi, X., Jiang, G., Zhang, W., 2013. Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales. Palaios, 28, 178-194.
[67]
Walter, M., 1996. Old fossils could be fractal frauds. Nature, 383(3), 385-386.
[68]
Yin, J., Fürsich, F.T., Werner, W., 1995. Reconstruction of palaeosalinity using carbon isotopes and benthic associations: a comparison. Geologische Rundschau, 84, 223-236.