Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India
Nivedita Chakrabortya, Subir Sarkarb
a Department of Geology, Kabi Jagadram Roy Govt. General Degree College, Bankura-722143, India;
b Department of Geological Sciences, Jadavpur University, Kolkata-700032, India
The Cretaceous (Albian-Cenomanian) Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic-Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation, exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous (Barremian-Aptian) Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association (FA 1), records the first carbonate marine transgression within the basin, comprising a bar-lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite-glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association (FA 2). While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement. Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association (FA 3). A tidal bar-interbar shelf depositional system allowed a transgressive systems tract motif to grow eventually passing upwards into the Karai Shale Formation, whose contact with the Dalmiapuram Formation is gradational.
Corresponding Authors:*E-mail address: nivedita.jugeo@gmail.com (N. Chakraborty).
Cite this article:
. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India[J]. Journal of Palaeogeography, 2018, 7(2): 146-167.
. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India[J]. Journal of Palaeogeography, 2018, 7(2): 146-167.
Allen J.R.L.,1982. Sedimentary Structures: Their Character and Physical Basis, Volume 1. Developments in Sedimentology, Volume 30A. Elsevier Science, 592 pp.
[2]
Alsop G.I., Marco S., Levi T., Weinberger R., 2017. Fold and thrust systems in mass transport deposits.Journal of Structural Geology, 94, 98-115.
[3]
Banerjee S., Bansal U., Pande K., Meena S.S., 2016. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation.Sedimentary Geology, 331, 12-29.
[4]
Banerji R.K., Ramasamy S., Malini C.S., Singh D., 1996. Uttatur Group redefined.Memoirs of the Geological Society of India, 37, 213-229.
[5]
Basilone L.,2009. Mesozoic tectono-sedimentary evolution of Rocca Busambra in western Sicily.Facies, 55(1), 115-135.
[23]
Kuzminsky E., Angelis P.D., Jaoudé R.A., Abbruzzese G., Terzoli S., Angelaccio C., Giovanbattista D.D., Monteverdi M.C., Valentini R., 2014. Biodiversity of ItalianTamarix spp. populations: Their potential as environmental and productive resources. Rendiconti Lincei, 25, 439-452.
[6]
Basilone L.,2017. Seismogenic rotational slumps and translational glides in pelagic deep-water carbonates. Upper Tithonian-Berriasian of Southern Tethyan margin (W Sicily, Italy).Sedimentary Geology, 356, 1-14.
[24]
Ledebour C.F., Meyer C.A., Bunge A., 1829. Flora Altaica 1. Berlin, pp. 421-426.
[7]
Basilone L., Lena G., Gasparo-Morticelli M., 2014. Synsedimentary-tectonic, soft-sediment deformation and volcanism in the rifted Tethyan margin from the Upper Triassic-Middle Jurassic deep-water carbonates in Central Sicily.Sedimentary Geology, 308, 63-79.
[8]
Basilone L., Sulli A., 2016. A facies distribution model controlled by a tectonically inherited sea bottom topography in the carbonate rimmed shelf of the upper Tithonian-Valanginian southern Tethyan continental margin (NW Sicily, Italy).Sedimentary Geology, 342, 91-105.
[9]
Basilone L., Sulli A., Gasparo Morticelli M., 2016. The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin — Central Sicily).Sedimentary Geology, 344, 310-322.
[10]
Bose P.K., Banerjee S., Sarkar S., 1997. Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India.Tectonophysics, 269(1-2), 151-169.
[11]
Bose P.K., Sarkar S., 1991. Basinal autoclastic mass flow regime in the Precambrian Chanda Limestone Formation, Adilabad, India.Sedimentary Geology, 73(3-4), 299-315.
[25]
Li Q., Yu L.J., Deng Y., Li W., Li M.T., Cao J.H., 2007. Leaf epidermal characters ofLonicera japonica and L. confusa and their ecology adaptation. Journal of Forestry research, 18, 103-108 (in Chinese with English abstract).
Bosence D., Cross N., Hardy S., 1998. Architecture and depositional sequences of Tertiary fault-block carbonate platforms: An analysis from outcrop (Miocene, Gulf of Suez) and computer modelling.Marine and Petroleum Geology, 15(3), 203-221.
[14]
Burchette T.P.,1988. Tectonic control on carbonate platform facies distribution and sequence development: Miocene, Gulf of Suez.Sedimentary Geology, 59(3-4), 179-204.
[15]
Chakraborty N.,2016. Barremian-Coniacian sediments and sequence building in the Pondicherry Sub-Basin of Cauvery Basin, India [PhD thesis]. Jadavpur University, Kolkata, 207 pp.
[16]
Chakraborty N., Sarkar S., Mandal A., Choudhuri A., Mandal S., 2018. Indigenous siliciclastic and extraneous polygenetic carbonate facies in the Albian-Turonian Karai Shale, Cauvery Basin, India. Carbonates and Evaporates, published online, DOI : 10.1007/s13146-018-0419-0.
[26]
Li Z.H., Chen J., Zhao G.F., Guo Y.P., Kou Y.X., Ma Y.Z., Wang G., Ma X.F., 2012. Response of a desert shrub to past geological and climate change: A phylogeographic study ofReaumuria soongarica(Tamaricaceae) in western China. Journal of Systematics Evolution, 50, 351-361.
[27]
Liu M.T.,1994. Species and its distribution ofTamarix L. from China. Xinjiang Forest Research, 1, 31-34 (in Chinese with English abstract).
[28]
Liu M.T., Liu D.X., Liu Q.H., 2012. Atlas of Comprehensive Research on the Genus Tamarix L. from China. Urumqi, Xinjiang Science and Technology Press (in Chinese with English abstract).
[29]
Loureiro J.D.,1790. Flora Cochinchinensis: Sistens plantas in regno Cochinchina nascentes. Quibus accedunt aliae observatae in Senensi imperio, Africa orientalis, Indiaeque locis variis. Tomus I. Lisbon, Academia Real das Sciencias.
[30]
Monique D.L., Jean D., 1995. Inventory of Mesozoic and Cenozoic woods from Equatorial and North Equatorial Africa.Review of Palaeobotany and Palynology, 84, 439-480.
[31]
Pan B.R.,1998. The diversity of the Tamaricaceae in China and its conservation strategy. In: Chen, Y., (Ed.), Biological diversity and the future of human beings, proceeding of the second national symposium on the conservation and sustainable use of biological diversity. Beijing, Chinese Forestry Press, pp. 114-122 (in Chinese with English abstract).
[32]
Sung Z.C.,1958. Tertiary spore and pollen complexes from the red beds of Chiuchuan, Kansu and their geological and botanical significance.Acta Palaeontologica Sinica, 6, 159-167 (in Chinese with English abstract).
[33]
Villar J.L., Alonso M.A., Juan A., Gaskin J.F., Crespo M.B., 2014. Proposal to conserve the nameTamarix ramosissima against T. pentandra(Tamaricaceae). Taxon, 63, 1140-1141.
[34]
Wang L.T., Yin L.K., 2004. Biodiversity and protection strategy of Tamaricaceae of Jungar Basin in Xinjiang.Journal of Arid Land Resources and Environment, 18, 139-145 (in Chinese with English abstract).
[17]
Chakraborty N., Sarkar S., Mandal A., Mejiama W., Tawfik H.A., Nagendra R., Bose P.K., Eriksson P.G., 2017. Physico-chemical characteristics of the Barremian-Aptian siliciclastic rocks in the Pondicherry embryonic rift sub-basin, India. In: Mazumdar, R. (Ed.), Sediment Provenance: Influences on Compositional Change from Source to Sink, first edition. Elsevier, pp. 85-121.
[18]
Chand S., Radhakrishna M., Subrahmanyam C., 2001. India-East Antarctica conjugate margins: Rift-shear tectonic setting inferred from gravity and bathymetry data.Earth and Planetary Science Letters, 185(1-2), 225-236.
[19]
Davis G.H., Reynolds S.J., 1996. Structural Geology of Rocks and Regions, third edition. John Wiley & Sons, New York, 287 pp.
[20]
Gawthorpe R.L., Leeder M.R., 2000. Tectono-sedimentary evolution of active extensional basins.Basin Research, 12(3-4), 195-218.
[35]
Wang Y.H., Lu L., Fritsch P.W., Wang H., Wang Y.H., Li D.Z., 2015. Leaf epidermal character variation and evolution in Gaultherieae (Ericaceae).Botanical Journal of the Linnean Society, 178, 686-710.
[21]
Ghosh J.G., de Wit M.J., Zartman R.E., 2004. Age and tectonic evolution of Neo-proterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies.Tectonics, 23(TC3006), 1-38.
[36]
Wei Y., Tan D.Y., Yin L.K., 1999. The discussions on the anatomical structure of leaf and its taxonomic relationship of Tamaricaceae in China. Acta Botanica Boreali-Occidentalia Sinica, 19, 113-118 (in Chinese with English abstract).
[37]
Xi Y.Z.,1988. Studies on pollen morphology of Tamaricaceae in China.Bulletin of Botanical Research, 8, 23-42 (in Chinese with English abstract).
[22]
Govindan A., Ananthanarayanan S., Vijayalakshmi K.G., 2000. Cretaceous petroleum system in Cauvery Basin, India. In: Govindan, A. (Ed.), Cretaceous Stratigraphy — An Update. Memoirs of the Geological Society of India, 46, pp. 365-382.
[23]
Grotzinger J.P.,1986. Evolution of Early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada.Journal of Sedimentary Petrology, 56(6), 831-847.
[24]
Hancock J.M., Kauffman E.G., 1979. The great transgressions of the Late Cretaceous.Journal of the Geological Society, 136(2), 175-186.
[25]
Hart M.B., Joshi A., Watkinson M.P., 2001. Mid-Late Cretaceous stratigraphy of the Cauvery Basin and the development of the eastern Indian Ocean. Journal of the Geological Society of India, 58(3), 217-229.
[38]
Xun S.H., Qiao L.Q., Kang Z., He H.B., Chen J.X., 2007. Research progress on germplasm resource and propagation technology ofTamarix L. in China. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 35, 97-102 (in Chinese with English abstract).
[26]
Leeder M.R., Gawthorpe R.L., 1987. Sedimentary models for extensional tilt-block/half-graben basins.Geological Society, London, Special Publications, 28, 139-152.
[39]
Yang Q., Gaskin J., 2007. Tamarix. In: Wu, Z.Y., Raven, P.H., (Eds.), Flora of China, Vol. 13. Beijing/St. Louis, Science Press and Missouri Botanical Garden Press, pp. 59-65.
[27]
Mandal A., Koner A., Sarkar S., Tawfik H.A., Chakraborty N., Bhakta S., Bose P.K., 2016. Physico-chemical tuning of palaeogeographic shifts: Bhuj Formation, Kutch, India.Marine and Petroleum Geology, 78, 474-492.
[28]
Mariotti G., Corda L., Brandano M., Civitelli G., 2002. Indicators of paleoseismicity in the Lower to Middle Miocene Guadagnolo Formation, central Apennines, Italy.GSA Special Papers, 359, 87-98.
[40]
Yang W.K., Zhang D.Y., Yin L.K., Zhang L.Y., 2002. Distribution and cluster analysis on the similarity of theTamarix communities in Xinjiang. Arid Zone Research, 19, 6-11 (in Chinese with English abstract).
[41]
Yin L.K.,1995. Tamarix spp., the keystone species of desert ecosystem. Arid Zone Research, 12, 43-47 (in Chinese with English abstract).
[29]
Mastrogiacomo G., Moretti M., Owen G., Spalluto L., 2012. Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento peninsula, southern Italy): Synsedimentary tectonics in the Apulian Carbonate Platform. Sedimentary Geology, 269-270, 15-27.
[42]
Yin L.K.,2002. The ex-situ protection and the ecological adaptability ofTamarix L. in China. Arid Zone Research, 19, 12-16 (in Chinese with English abstract).
[30]
Mishra P.K., Rajnikanth A., Jauhri A.K., Kishore S., Singh S.K., 2004. Albian limestone building algae of Cauvery Basin, South India. Current Science, 87(11), 1516-1518.
[43]
Yin L.K., Yang W.K., 1998. An evaluation of the plant resources and diversity of Tamaricaceae in China. Proceedings of the International Conference on Desert Technology 4, New Technologies for Sustainable Production in Arid Areas.Journal of Arid Land Studies, 7, 201-204 (in Chinese with English abstract).
[44]
Zhai S.H., Li M.X., 1986. Chromosome number ofTamarix L. Acta Phytotaxonomica Sinica, 24, 273-274 (in Chinese with English abstract).
[45]
Zhai S.H., Wang C.G., Gao X.Z., 1983. Morphological and anatomical observations of clasping leaves ofTamarix L. Acta Botanical Sinica, 25, 519-525 (in Chinese with English abstract).
[46]
Zhang D.Y.,2004a. A cladistics analysis ofTamarix from China. Acta Botanica Yunnanica, 26, 275-282 (in Chinese with English abstract).
[47]
Zhang D.Y.,2005. Discuss on some systematical problems of Tamaricaceae.Acta Botanica Yunnanica, 27, 471-478 (in Chinese with English abstract).
[31]
Nagendra R., Kamalak Kannan B.V., Sen G., Gilbert H., Bakkiaraj D., Reddy A.N., Jaiprakash B.C., 2011. Sequence surfaces and paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery Basin, India.Marine and Petroleum Geology, 28, 895-905.
[48]
Zhang D.Y., Chen Z.D., Sun H.Y., Yin L.K., Pan B.R., 2000. Systematic studies on some questions of Tamaricaceae based on ITS sequence.Acta Botanica Boreali-Occidentalia Sinica, 20, 421-431 (in Chinese with English abstract).
[32]
Nagendra R., Nallapa Reddy A., 2017. Major geologic events of the Cauvery Basin, India and their correlation with global signatures — A review.Journal of Palaeogeography, 6(1), 69-83.
[49]
Zhang D.Y., Pan B.R., Yin L.K., 2003a. The photogeographical studies ofTamarix(Tamaricaceae). Acta Botanica Yunnanica, 25, 415-427 (in Chinese with English abstract).
[33]
Narasimha Chari M.V., Sahu J.N., Banerjee B., Zutshi P.L., Chandra K., 1995. Evolution of the Cauvery basin, India from subsidence modelling.Marine and Petroleum Geology, 12(6), 667-675.
[34]
Owen G., Moretti M., Alfaro P., 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology, 235(3-4SI), 133-140.
[50]
Zhang D.Y., Tan D.Y., Zhang J., Pan B.R., 2003b. Comparative anatomy of Yong Branches of 16 species ofTamarix from China with reference to their ecological significance. Acta Botanica Yunnanica, 25, 653-662 (in Chinese with English abstract).
[51]
Zhang D.Y., Yin L.K., Pan B.R., 2002. A review on the systematics study ofTamarix L. Arid Zone Research, 19, 41-46 (in Chinese with English abstract).
[52]
Zhang P.Y., Liu M.T., 1988. Four new species ofTamarix from China. Acta Botanica Boreali-Occidentalia Sinica, 8, 263 (in Chinese with English abstract).
[35]
Peucat J.J., Jayananda M., Chardon D., Capdevilla R., Fanning C.M., Paquette J.L., 2013. The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains.Precambrian Research, 227, 4-28.
[53]
Zhang P.Y., Zhang Y.J., 1990. Tamaricaceae. In: Li, H.W., (Ed.), Flora Reipublicae Popularis Sinicae (FRPS), Tomus 50(2). Beijing, Science Press, pp. 142-177 (in Chinese).
[54]
Zhang Y.M.,2004b. Cluster analysis on pollen morphology of the Tamaricaceae from China.Acta Botanica Boreali-Occidentalia Sinica, 24, 1702-1707 (in Chinese with English abstract).
[55]
Zhang Y.M., Pan B.R., Yin L.K., 1998. Seed morphology of Tamaricaceae in China arid areas and its systematic evolution.Journal of Plant Resources and Environment, 7, 22-27 (in Chinese with English abstract).
[36]
Porten K.W., Kane I.A., Warchoł M.J., Southern S.J., 2016. A sedimentological process-based approach to depositional reservoir quality of deep-marine sandstones: An example from the Springar Formation, northwestern Vøring Basin, Norwegian Sea.Journal of Sedimentary Research, 86(11), 1269-1286.
[56]
Zhang Y.M., Pan B.R., Yin L.K., 2001. Pollen morphology of the Tamaricaceae from China and its taxonomic significance.Acta Botanica Boreali-Occidentalia Sinica, 21, 857-864 (in Chinese with English abstract).
[37]
Powell C.M., Roots S.R., Veevers J.J., 1988. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean.Tectonophysics, 155, 261-283.
[38]
Ramkumar M., Stüben D., Berner Z., 2003. Lithostratigraphy, depositional history and sea level changes of the Cauvery Basin, southern India.Annales Géologiques de la Péninsule Balkanique, 65, 1-27.
[39]
Rangaraju M.K., Agarwal A., Prabhakar K.N., 1993. Tectonostratigraphy, structural styles, evolutionary model and hydrocarbon prospects of Cauvery and Palar Basins. In: Biswas, S.K., Dave, A., Carg, P., Pandey, J., Maithani, A., Thomas, N.J. (Eds.), Proceedings of the Second Seminar on Petroliferous Basins of India. Indian Petroleum Publishers, Dehra Dun, pp. 371-388.
[40]
Santantonio M.,1993. Facies associations and evolution of pelagic carbonate platform/basin systems: Examples from the Italian Jurassic.Sedimentology, 40(6), 1039-1067.
[41]
Sarkar S., Chakraborty N., Mandal A., Banerjee S., Bose P.K., 2014. Siliciclastic-carbonate mixing modes in the river-mouth bar palaeogeography of the Upper Cretaceous Garudamangalam Sandstone (Ariyalur, India).Journal of Palaeogeography, 3(3), 233-256.
[42]
Sastri, V.V., Raju, D.S.N., Venkatachala, B.S., Acharyya, S.K. 1979. Sedimentary Basin Map of India. In: Stratigraphic Correlation between Sedimentary Basins of the ESCAP Region. Mineral Resource Development Series, vol. 45. United Nations, New York.
[43]
Schieber J., Southard J., Thaisen K., 2007. Accretion of mudstone beds from migrating floccule ripples.Science, 318(5857), 1760-1763.
Seidler L., Steel R., 2001. Pinch-out style and position of tidally influenced strata in a regressive-transgressive wave-dominated deltaic sandbody, Twentymile Sandstone, Mesaverde Group, NW Colorado.Sedimentology, 48(2), 399-414.
[46]
Shanmugam G.,2015. The landslide problem.Journal of Palaeogeography, 4(2), 109-166.
[47]
Shanmugam G.,2017. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems.Journal of Palaeogeography, 6(4), 251-320.
[48]
Sundaram R., Henderson R.A., Ayyasami K., Stilwell J.D., 2001. A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India.Cretaceous Research, 22(6), 743-762.
[49]
Sundaram R., Rao P.S., 1979. Lithostratigraphy classification of Uttattur and Trichinopoly Groups of Upper Cretaceous rocks of Tiruchirapalli district, Tamilnadu.Geological Survey of India, Miscellaneous Publication, 45, 111-119.
[50]
Tewari, A, Hart M.B., Watkinson M.P., 1996a. A revised lithostratigraphical classification of the Cretaceous rocks of Trichinopoly District, Cauvery Basin, Southeast India. In: Pandey, J., Azmi, R.J., Bhandari, A., Dave, A. (Eds.), Contributions to XV Indian Colloquium on Micropaleontology and Stratigraphy. The K. D. Malaviya Institute of Petroleum Exploration and the Wadia Institute of Himalayan Geology, Dehra Dun, pp. 789-800.
[51]
Tewari A., Hart M.B., Watkinson M.P., 1996b. Foraminiferal recovery after the mid-Cretaceous oceanic anoxic events (OAEs) in the Cauvery Basin, Southeast India. In: Hart, M.B. (Ed.), Biotic Recovery from Mass Extinction Events. Geological Society, London, Special Publications, vol. 102, pp. 237-244.
[52]
Watkinson M.P., Hart M.B., Joshi A., 2007. Cretaceous tectonostratigraphy and the development of the Cauvery Basin, Southeast India.Petroleum Geoscience, 13(2), 181-191.