Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece
Evangelos Tsakalosa,b,c, Elias Dimitrioua, Maria Kazantzakib, Christos Anagnostoud, John Christodoulakisb,e, Eleni Filippakib
a Hellenic Centre for Marine Research, Institute of Inland Waters, Anavissos 190 13, Greece;
b Laboratory of Archaeometry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, N.C.S.R. “Demokritos”, Aghia Paraskevi, Athens 153 10, Greece;
c Department of Geophysics, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
d Hellenic Centre of Marine Research, Institute of Oceanography, Anavissos 190 13, Greece;
e Climate Research Group, Division of Environmental Physics and Meteorology Faculty of Physics, National and Kapodistrian University of Athens, Athens 157 84, Greece
This study reports on the first investigation into the potential of luminescence dating to establish a chronological framework for the depositional sequences of the Sperchios delta plain, central Greece. A series of three borehole cores (20 m deep) and two shallow cores (4 m deep), from across the delta plain, were extracted, and samples were collected for luminescence dating. The luminescence ages of sand-sized quartz grains were obtained from small aliquots of quartz, using the Single-Aliquot Regenerative-dose (SAR) protocol. The equivalent dose determination included a series of tests and the selection of the Minimum Age Model (MAM) as the most appropriate statistical model. This made it possible to confirm the applicability of quartz Optically Stimulated Luminescence (OSL) dating to establish absolute chronology for deltaic sediments from the Sperchios delta plain.Testing age results of the five cores showed that the deltaic sediments were deposited during the Holocene. A relatively rapid deposition is implied for the top ~14 m possibly as a result of the deceleration in the rate of the sea-level rise and the transition to terrestrial conditions, while on the deeper parts, the reduced sedimentation rate may indicate a lagoonal or coastal environment.
. Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece[J]. Journal of Palaeogeography, 2018, 7(2): 130-145.
. Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece[J]. Journal of Palaeogeography, 2018, 7(2): 130-145.
Preusser F., Degering D., Fuchs M., Hilgers A., Kadereit A., Klasen N., Krbetschek M., Richter D., Spencer J.Q.G., 2008. Luminescence dating: Basics, methods and applications.Journal of Quaternary Science, 57, 95-149.
[49]
Rendell H.M., Webster S.E., Sheffer N.L., 1994. Underwater bleaching of signals from sediment grains: New experimental data.Quaternary Science Reviews, 13, 433-435.
[50]
Rittenour T.,2008. Luminescence dating of fluvial deposits: Applications to geomorphic, palaeoseismic and archaeological research.Boreas, 37, 613-635.
[1]
Abbruzzese G., Kuzminsky E., Jaoudé R.A., Angelaccio C., Eshel A., Scoppola A., Valentini R., 2013. Leaf epidermis morphological differentiation betweenTamarix africana Poir. and Tamarix gallica L.(Tamaricaceae) with ecological remarks. Plant Biosystems, 147, 573-582.
[51]
Roberts R.G., Galbraith R.F., Olley J.M., Yoshida H., Laslett G.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part II, results and implications.Archaeometry, 41, 365-395.
[2]
Alaimo M.G., Gargano M.L., Vizzi D., Venturella G., 2013. Leaf anatomy in Tamarix arborea var. arborea (Tamaricaceae). Plant Biosystems, 147, 21-24.
[3]
Alvin K.L., Boulter M.C., 1974. A controlled method of comparative study of taxodiaceous cuticles.Botanical Journal of the Linnean Society, 69, 277-286.
[52]
Rodnight H., Duller G.A.T., Wintle A.G., Tooth S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits.Quaternary Geochronology, 1, 109-120.
[4]
Baranova M.,1987. Historical development of the present classification of morphological type of stomates.The Botanical Review, 53, 53-79.
[5]
Baranova M.,1992. Principles of comparative stomatographic studies of flowering plants.The Botanical Review, 58, 1-99.
[6]
Baum B.R.,1978. The genus Tamarix. Jerusalem, Jerusalem Academic Press.
[7]
Baum B.R., Bassett I.J., Crompton C.W., 1970. Pollen morphology and its relationships to taxonomy and distribution ofTamarix, series Vaginantes. Österreichische Botanische Zeitschrift, 118, 182-188.
[8]
Boissier E.,1867. Flora Orientalis 1. Basel Geneva, pp. 763-779.
[9]
Bunge A.,1851. Alexandri Lehmann Reliquiae Botanicae.Mémoires de L'Académie Impériale des Sciences de St. Petersbourg. Divers Savans, 7, 290-296.
[10]
Bunge A.,1852a. Beitrag zur Kenntniss der Flora Russlands und der Steppen Central-Asiens. 119 pp.
[11]
Bunge A.,1852b. Tentamen generís Tamaricum species accuratius definíendi. Dorpat, 44 pp.
[53]
Somoza L., Barnolas A., Arasa A., Maestro A., Rees J.G., Hernandez-Molina F.J., 1998. Architectural stacking patterns of the Ebro delta controlled by Holocene high frequency eustatic fluctuations, delta-lobe switching and subsidence processes.Sedimentary Geology, 117, 11-32.
[54]
Stanley D.J., Warne A., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea level rise.Science, 265, 228-231.
[55]
Stokes S., Bray H.E., Blum M.D., 2001. Optical resetting in large drainage basins: Tests of zeroing assumptions using single-aliquot procedures.Quaternary Science Reviews, 20, 879-885.
[12]
Cheng Z.M., Pan H.X., Yin L.K., 2000. Study on the phytochemistry taxonomy ofTamarix Linn and Myricaria Desv. Acta Botanica Boreali-Occidentalia Sinica, 20, 275-282 (in Chinese with English abstract).
[56]
Styllas M.,2014. A simple approach for defining Holocene sequence stratigraphy using borehole and cone penetration test data.Sedimentology, 61, 444-460.
[13]
Evert R.F.,2006. Esau's plant anatomy: Meristems, cells, and tissues of the plant body: Their structure, function, and development, Third Edition. New Jersey, John WileyδSons.
[14]
Feng Y., Yin L.K., 2000. Study on organs morphology and its taxonomic significance ofTamarix L. Arid Zone Research, 17, 40-45 (in Chinese with English abstract).
[15]
Ferris R., Nijs I., Behaeghe T., Impens I., 1996. Elevated CO2 and temperature have different on leaf anatomy of perennial ryegrass in spring and summer.Annals of Botany, 78, 489-497.
[16]
Gaskin J.F., Ghahremani-Nejad F., Zhang D.Y., Jason P.L.A., 2004. A systematic overview of Frankeniaceae and Tamaricaceae from nuclear DNA and plastid sequence data.Annals of the Missouri Botanical Garden, 91, 401-409.
[57]
Theodorakopoulou K., Pavlopoulos K., Thriantaphyllou M., Kouli K., Tsourou T., Bassiakos Y., Zacharias N., Hayden B., 2009. Geoarchaeological studies in the coastal area of Istron-Kalo Chorio (Gulf of Mirabello-Eastern Crete): Landscape evolution and paleoenvironmental reconstruction.Zeitschrift fur Geomorphologie, 53, 55-70.
[17]
Glover B.J.,2010. Epidermis: Outer cell layer of the plant (Encyclopedia of Life Sciences (ELS)). New Jersey, John Wiley & Sons.
[18]
Gupta A.K., Murty Y.S., 1984. The leaf epidermal structures in Tamaricaceae.Acta Botanica Indica, 12, 200-204.
[58]
Trauerstein M., Lowick S.E., Preusser F., Veit H., 2017. Testing the suitability of dim sedimentary quartz from northern Switzerland for OSL burial dose estimation.Geochronometria, 44, 66-76.
[19]
Hua L., Zhang D.Y., Pan B.R., 2004. Molecular systematics ofTamarix and Myricaria in China inferred from ITS Sequence Data. Acta Botanica Yunnanica, 26, 283-289 (in Chinese with English abstract).
[59]
Tsakalos E., Christodoulakis J., Charalambous L., 2016. The Dose Rate calculator (DRc) ? A Java application for dose rate and age determination based on luminescence and ESR dating.Archaeometry, 58, 347-352.
[20]
Jiang D.X., Yang H.Q., 1980. Petroleum spore-pollen assemblages and oil source rock of Yumen oil-bearing region in Gansu.Acta Botanica Sinica, 22, 280-285 (in Chinese with English abstract).
[21]
Jones J.H.,1986. Evolution of the Fagaceae: The implications of foliar features.Annals of the Missouri Botanical Garden, 73, 228-275.
[22]
Kerp H.,1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios, 5, 548-569.
[60]
Tziavos C.,1977. Sedimentology, ecology and paleogeography of the Sperchios valley and Maliakos gulf, Greece. Master Thesis, University of Delaware.
[61]
Vouvalidis K., Syrides G., Albanakis K., 2005. Holocene morphology of the Thessaloniki Bay: Impact of sea level rise.Zeitschrift fur Geomorphologie, 137, 147-158.
[62]
Vouvalidis K., Syrides G., Pavlopoulos K., Papakonstantinou M., Tsourlos P., 2010b. Holocene palaeoenvironmental changes in Agia Paraskevi prehistoric settlement, Lamia, central Greece.Quaternary International, 216, 64-74.
[63]
Vouvalidis K., Syrides G., Pavlopoulos K., Pechlivanidou S., Tsourlos P., Papakonstantinou M., 2010a. Palaeogeographical reconstruction of the battle terrain in Ancient Thermopylae, Greece.Geodinamica Acta, 23(5-6), 241-253.
[64]
Wallinga J.,2002. Optically stimulated luminescence dating of fluvial deposits: A review.Boreas, 31, 303-322.
[65]
Wallinga J., Bos I.J., 2010. Optical dating of fluvio-deltaic clastic lake-fill sediments ? A feasibility study in the Holocene Rhine delta (western Netherlands).Quaternary Geochronology, 5, 602-610.
Wintle A.G., Murray A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single aliquot regeneration dating protocols.Radiation Measurements, 41(4), 369-391.
[68]
Zacharias N., Bassiakos Y., Hayden B., Theodorakopoulou K., Michael C.T., 2009. Luminescence dating of deltaic deposits from Eastern Crete, Greece: Geoarchaeological implications.Geomorphology, 109, 46-53.