Sedimentologic, oceanographic, and hydraulic engineering publications on hyperpycnal flows claim that (1) river flows transform into turbidity currents at plunge points near the shoreline, (2) hyperpycnal flows have the power to erode the seafloor and cause submarine canyons, and, (3) hyperpycnal flows are efficient in transporting sand across the shelf and can deliver sediments into the deep sea for developing submarine fans. Importantly, these claims do have economic implications for the petroleum industry for predicting sandy reservoirs in deep-water petroleum exploration. However, these claims are based strictly on experimental or theoretical basis, without the supporting empirical data from modern depositional systems. Therefore, the primary purpose of this article is to rigorously evaluate the merits of these claims.
A global evaluation of density plumes, based on 26 case studies (e.g., Yellow River, Yangtze River, Copper River, Hugli River (Ganges), Guadalquivir River, Río de la Plata Estuary, Zambezi River, among others), suggests a complex variability in nature. Real-world examples show that density plumes (1) occur in six different environments (i.e., marine, lacustrine, estuarine, lagoon, bay, and reef); (2) are composed of six different compositional materials (e.g., siliciclastic, calciclastic, planktonic, etc.); (3) derive material from 11 different sources (e.g., river flood, tidal estuary, subglacial, etc.); (4) are subjected to 15 different external controls (e.g., tidal shear fronts, ocean currents, cyclones, tsunamis, etc.); and, (5) exhibit 24 configurations (e.g., lobate, coalescing, linear, swirly, U-Turn, anastomosing, etc.).
Major problem areas are: (1) There are at least 16 types of hyperpycnal flows (e.g., density flow, underflow, high-density hyperpycnal plume, high-turbid mass flow, tide-modulated hyperpycnal flow, cyclone-induced hyperpycnal turbidity current, multi-layer hyperpycnal flows, etc.), without an underpinning principle of fluid dynamics. (2) The basic tenet that river currents transform into turbidity currents at plunge points near the shoreline is based on an experiment that used fresh tap water as a standing body. In attempting to understand all density plumes, such an experimental result is inapplicable to marine waters (sea or ocean) with a higher density due to salt content. (3) Published velocity measurements from the Yellow River mouth, a classic area, are of tidal currents, not of hyperpycnal flows. Importantly, the presence of tidal shear front at the Yellow River mouth limits seaward transport of sediments. (4) Despite its popularity, the hyperpycnite facies model has not been validated by laboratory experiments or by real-world empirical field data from modern settings. (5) The presence of an erosional surface within a single hyperpycnite depositional unit is antithetical to the basic principles of stratigraphy. (6) The hypothetical model of "extrabasinal turbidites", deposited by river-flood triggered hyperpycnal flows, is untenable. This is because high-density turbidity currents, which serve as the conceptual basis for the model, have never been documented in the world's oceans. (7) Although plant remains are considered a criterion for recognizing hyperpycnites, the "Type 1" shelf-incising canyons having heads with connection to a major river or estuarine system could serve as a conduit for transporting plant remains by other processes, such as tidal currents. (8) Genuine hyperpycnal flows are feeble and muddy by nature, and they are confined to the inner shelf in modern settings. (9) Distinguishing criteria of ancient hyperpycnites from turbidites or contourites are muddled. (10) After 65 years of research since Bates (1953), our understanding of hyperpycnal flows and their deposits is still incomplete and without clarity.
Acha E.,2008. An overview of physical and ecological processes in the Río de la Plata Estuary.Continental Shelf Research, 28(13), 1579-1588.
[69]
Jagadeesan L., Jyothibabu R., Anjusha A., Mohan A.P., Madhu N.V., Muraleedharan K.R., Sudheesh K., 2013. Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India.Progress in Oceanography, 110, 27-48.
[70]
Johnson A.M.,1970. Physical Processes in Geology. Freeman, Cooper and Co., San Francisco, 577 pp.
[42]
Nagarajan R.,Armstrong-Altrin, J.S., Kessler, F.L., Jong, J., 2017. Petrological and geochemical constraints on provenance, paleo-weathering and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, Northwest Borneo. In: Mazumder, R., (Ed.), Sediment Provenance. Elsevier Amsterdam, Netherlands. Chapter 7. pp. 123-153.
[2]
Allen J.R.L., 1985. Loose-boundary hydraulics and fluid mechanics, selected advances since 1961. In: Brenchley, P.J., Williams, P.J., (Eds.), Sedimentology, Recent Developments and Applied Aspects, Published for the Geological Society. Blackwell Scientific Publications, Oxford, pp. 7-28.
[43]
Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature, 299(5885), 715-717.
[3]
Arnau P., Liquete C., Canals M., 2004. River mouth plume events and their dispersal in the northwestern Mediterranean Sea.Oceanography, 17(3), 23-31.
[44]
Nixon G.T.,1988. Petrology of the younger andesites and dacites of Iztaccíhuatl volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. Journal of Petrology, 29(2), 265-303.
[71]
Johnson K.S., Paull C.K., Barry J.P., Chavez F.P., 2001. A decadal record of underflows from a coastal river into the deep sea.Geology, 29, 1019-1022.
[45]
Okita P.M.,1992. Manganese carbonate mineralization in the Molango District, Mexico.Economic Geology, 87(5), 1345-1366.
[72]
Kassem A., Imran J., 2001. Simulation of turbid underflows generated by the plunging of a river. The Journal of Geology, 29(7), 655-658.
[46]
Okita P.M., Shanks III W.C., 1992. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China.Chemical Geology, 99(1-3), 139-163.
[123] Palanques A., Durrieu de Madron X., Puig P., Fabres J., Guillén J., Calafat A., Canals M., Heussner S., Bonnin J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading.Marine Geology, 234, 43-61.
[74]
Khanna D.R., Yadav P.R., 2008. Biology of Coelenterata. Discovery Publishing Pvt. Ltd., 393 pp.
[75]
Kostic S., Parker G., Marr J.G., 2002. Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water.Journal of Sedimentary Research, 72(3), 353-362.
[47]
Orozco-Esquivel T., Petrone C.M., Ferrari L., Tagami T., Manetti P., 2007. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip.Lithos, 93(1-2), 149-174.
[76]
Kostic S., Parker K., 2003. Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation.Journal of Hydraulic Research, 41(2), 141-152.
[48]
Paikaray S., Banerjee S., Mukherji S., 2008. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering.Journal of Asian Earth Sciences, 32(1), 34-48.
[124] Pan S., Liu H., Zavala C., Liu C., Liang S., Zhang Q., Bai Z., 2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China.Petroleum Exploration and Development, 44(6), 911-922.
[77]
Krumbein W.C., Sloss L.L., 1963. Stratigraphy and Sedimentation, 2nd Edition. San Francisco, W.H. Freeman and Company, 660 pp.
[125] Parker G., Toniolo H., 2007. Note on the analysis of plunging of density flows. Journal of Hydraulic Engineering, 133, 690-694.
[126] Parsons J.D., Bush J.W.M., Syvitski J.P.M., 2001. Hyperpycnal plume formationfrom riverine outfl ows with small sediment concentrations.Sedimentology, 48, 465-478.
[78]
Lamb M.P., McElroy B., Kopriva B., Shaw J., Mohrig D., 2010. Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications.GSA Bulletin, 122, 1389-1400.
[79]
Lamb M.P., Mohrig D., 2009. Do hyperpycnal-flow deposits record river-flood dynamics?Geology, 37(12), 1067-1070.
[49]
Papadopoulos A., Koroneos A., Christofides G., Papadopoulou L., Tzifas I., Stoulos S., 2016. Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece). Journal of Environmental Radioactivity, 162-163, 235-243.
[127] Paull C.K., Ussler III.W., Borowski W.S., Spiess F.N., 1995. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates.Geology, 23(1), 89-92.
[4]
Assireu A.T., Alcântara E., Novo E.M.L.M., Roland F., Pacheco F.S., Stech J.L., Lorenzzetti J.A., 2011. Hydro-physical processes at the plunge point: An analysis using satellite and in situ data.Hydrology and Earth System Sciences, 15(12), 3689-3700.
[50]
Perez-Cruz L.L., Machain-Castillo M.L., 1990. Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico.Journal of Foraminiferal Research, 20(4), 312-325.
[80]
Lamb M.P., Nittrouer J.A., Mohrig D., Shaw J., 2012. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics.Journal of Geophysical Research: Earth Surface, 117, F01002.
[5]
Bagnold R.A.,1954. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear.Proceedings of the Royal Society, Series A, Mathematical, Physical & Engineering Sciences, 225, 49-63.
[6]
Bagnold R.A.,1962. Auto-suspension of transported sediment; turbidity currents.Proceedings of the Royal Society, Series A, Mathematical, Physical & Engineering Sciences, 265, 315-319.
[51]
Periasamy V., Venkateshwarlu M., 2017. Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh Basin, India: Implications for provenance and tectonic setting.Journal of Earth System Science, 126(4), 44.
[81]
Lane E.W.,1957. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material. U.S. Army Corps of Engineers, Missouri River Division, Omaha, Nebraska.
[52]
Pflum C.E., Frerichs W.E., 1976. Gulf of Mexico deep-water foraminifers.Cushman Foundation for Foraminiferal Research Special Publication, no. 14, pp. 1-125.
[7]
Balasubramanian T., Ajmal Khan S., 2002. Estuaries of India. Environmental Information System Centre, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India, Sponsored by the Ministry of Environment & Forests, Government of India, New Delhi: ENVIS Publication Series: 1/2002, 195 pp.
[82]
Lewis T., Lamoureux S.F., Normandeau A., Dugan H.A., 2018. Hyperpycnal flows control the persistence and flushing of hypoxic high-conductivity bottom water in a High Arctic lake.Arctic Science, 4, 26-41.
[8]
Barnard P.L., Hanes D.M., Rubin D.M., Kvitek R.G., 2006. Giant sand waves at the mouth of San Francisco Bay.Eos, Transactions American Geophysical Union, 87(29), 287-289.
[9]
Bates C.C.,1953. Rational theory of delta formation.AAPG Bulletin, 37(9), 2119-2162.
[10]
Bhattacharya J., MacEachern J., 2009. Hyperpycnal rivers and prodeltaic shelves in the cretaceous seaway of North America.Journal of Sedimentary Research, 79, 184-209.
[83]
Li G.X., Tang Z.S., Yue S.H., Zhuang K.L., Wei H.L., 2001. Sedimentation in the shear front off the Yellow River mouth.Continental Shelf Research, 21(6-7), 607-625.
[128] Peliz A., Marchchesiello P., Santos A.M.P., Dubert J., Teles-Machado A., Marta-Almeida M., 2009. Surface circulation in the Gulf of Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current.Journal of Geophysical Research: Oceans, 114, C03011.
[129] Petter A.L., Steel R.J., 2006. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, central basin, Spitsbergen.AAPG Bulletin, 90, 1451-1472.
[11]
Bi N.S., Yang Z.S., Wang H.J., Hu B.Q., Ji Y.J., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period.Estuarine, Coastal and Shelf Science, 86(3), 352-362.
[12]
Bouma A.H.,1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam/New York, 168 pp.
[53]
Ramos-Vázquez M.A., Armstrong-Altrin J.S., Rosales-Hoz L., Machain-Castillo M.L., Carranza-Edwards A., 2017. Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos River delta, western Gulf of Mexico, Mexico.Arabian Journal of Geosciences, 10(6), 148.
[13]
Bouma A.H., Hampton M.A., Orlando R.C., 1977. Sand waves and other bedforms in Lower Cook Inlet, Alaska.Marine Geotechnology, 2, 291-308.
[14]
Bouma A.H., Normark W.R., Barnes N.E., 1985. Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York, 351 pp.
[130] Pierce L.E.R.,2012. Poverty Shelf, New Zealand from the Holocene to Present: Stratigraphic Development and Event Layer Preservation in Response to Sediment Supply, Tectonics and Climate. Ph.D. Dissertation. Williamsburg, VA, The College of William & Mary, 274 pp.
[84]
Liu J.P., Li A.C., Xu K.H., Velozzi D.M., Yang Z.S., Milliman J.D., DeMaster D.J., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea.Continental Shelf Research, 26, 2141-2156.
[54]
Rodríguez S.R., Morales-Barrera W., Layer P., González-Mercado E., 2010. A Quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican Volcanic Belt: Geology, distribution and morphology of the volcanic vents.Journal of Volcanology and Geothermal Research, 197(1), 149-166.
[15]
Boyd R., Ruming K., Goodwin I., Sandstrom M., Schröder-Adams C., 2008. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island, southeast Australia.Geology, 36, 15-18.
[16]
Breien H., De Blasio F.V., Elverhøi A., Nystuen J.P., Harbitz C.B., 2010. Transport mechanisms of sand in deep-marine environments — Insights based on laboratory experiments.Journal of Sedimentary Research, 80, 975-990.
[17]
Broecker W.S., Sanyal A., Takahashi T., 2000. The origin of Bahamian Whitings revisited.Geophysical Research Letters, 27(22), 3759-3760.
[85]
Liu J.T., Wang Y.H., Yang R.J., Hsu R.T., Kao S.J., Lin H.L., Kuo F.H., 2012. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon.Journal of Geophysical Research: Oceans, 117, C04033.
[86]
Liu K.B., Sun S., Jiang X., 1992. Environmental change in the Yangtze River Delta since 12,000 Years B.P.Quaternary Research, 38, 32-45.
[18]
Chen J.Y., Shen H.T., Yun C.X., 1998. Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai Scientific and Technical Publishers, Shanghai, 453 pp. (in Chinese with English Abstract).
[131] Pierson T.C., Costa J.E., 1987. A rheologic classification of subaerial sediment-water flows. In: Costa, J.E., Wieczorek, G.F., (Eds.). Debris Flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, 7, 1-12.
[55]
Rosales-Hoz L., Carranza-Edwards A., Martínez-Serrano R.G., Alatorre M.A., Armstrong-Altrin J.S., 2015. Textural and geochemical characteristics of marine sediments in the SW Gulf of Mexico: Implications for source and seasonal change.Environmental Monitoring Assessment, 187(4), 205.
[132] Plink-Björklund P., Steel R., 2004. Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites.Sedimentary Geology, 165, 29-52.
[56]
Roser B.P., Korsch R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data.Chemical Geology, 67(1-2), 119-139.
[133] Postma G., Nemec W., Kleinspehn K.L., 1988. Large floating clasts in turbidites, a mechanism for their emplacement.Sedimentary Geology, 58, 47-61.
[19]
Chen S., Steel R.J., Dixon J.F., Osman A., 2014. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta (Morne L'Enfer Formation) SW Trinidad.Marine and Petroleum Geology, 57, 208-232.
[87]
Lu S., Tong C.F., Lee D.Y., Zheng J.H., Shen J., Zhang W., Yan Y.X., 2015. Propagation of tidal waves up in Yangtze Estuary during the dry season.Journal of Geophysical Research: Oceans, 120, 6445-6473.
[134] Pratson L.F., Ryan W.B.F., Mountain G.S., Twichell D.C., 1994. Submarine canyon initiation by downslope-eroding sediment flows: Evidence in Late Cenozoic strata on the New Jersey continental slope.GSA Bulletin, 106, 395-412.
[57]
Saha S., Banerjee S., Burley S.D., Ghosh A., Saraswati P.K., 2010. The influence of flood basaltic source terrains on the efficiency of tectonic setting discrimination diagrams: An example from the Gulf of Khambhat, western India.Sedimentary Geology, 228(1-2), 1-13.
[135] Puig P., Palanques A., Martín J., 2014. Contemporary sediment-transport processes in submarine canyons.Annual Review of Marine Science, 6, 53-77.
[58]
Saha S., Burley S., Banerjee S., 2018. Mixing processes in modern estuarine sediments from the Gulf of Khambhat, western India.Marine and Petroleum Geology, 91, 599-621.
[88]
Luo Z., Zhu J., Wu H., Li X., 2017. Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas. Journal of Geophysical Research: Oceans, 122, 10,073-10,090. https://doi.org/10.1002/2017JC013215.
Marr J.G., Harff P.A., Shanmugam G., Parker G., 2001. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures.GSA Bulletin, 113, 1377-1386.
[21]
Chen S.N., Geyer W.R., Hsu T.J., 2013. A numerical investigation of the dynamics and structure of Hyperpycnal River plumes on sloping continental shelves.Journal of Geophysical Research: Oceans, 118(5), 2702-2718.
[136] Purkis S., Cavalcante G., Rohtla L., Oehlert A.M., Harris, P.M. Swart P.K., 2017. Hydrodynamic control of whitings on Great Bahama Bank.Geology, 45(10), 939-942.
[22]
Chen Z., Chen D., Xu K., Zhao Y., Wei T., Chen J., Watanabe M., 2007. Acoustic Doppler current profiler surveys along the Yangtze River.Geomorphology, 85, 155-165.
[23]
Chikita K.,1989. A field study on turbidity currents initiated from spring runoffs.Water Resources Research, 25, 257-271.
[24]
Chu V.W.,2014. Greenland ice sheet hydrology: A review.Progress in Physical Geography, 38(1): 19-54.
[137] Qiao L.L., Bao X.W., Wu D.X., Wang X.H., 2008. Numerical study of generation of the tidal shear front off the Yellow River mouth.Continental Shelf Research, 28(14), 1782-1790.
[138] Rebesco, M., Camerlenghi, A., 2008. Contourites, Developments in Sedimentology. Developments in sedimentology, 60. Elsevier, Amsterdam, 663 pp.
[90]
Martín-Chivelet, J., Fregenal-Martínez, M.A., Chacón, B., 2008. Chapter 10 Traction structures in contourites. In: Rebesco, M., Camerlenghi, A., (Eds.), Contourites. Developments in Sedimentology, 60, Elsevier, Amsterdam, pp. 159-182.
[25]
Clare M.A., Hughes-Clarke J.E., Talling P.J., Cartigny M.J.B., Pratomo D.G., 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta.Earth and Planetary Science Letters, 450, 208-220.
[91]
Masunaga E., Hommaa H., Yamazaki H., Fringer O.B., Nagai T., Kitade Y., Okayasu A., 2015. Mixing and sediment resuspension associated with internal bores in a shallow bay.Continental Shelf Research, 110, 85-99.
[92]
Matano R.P., Palma E.D., Piola A.R., 2010. The influence of the Brazil and Malvinas Currents on the southwestern Atlantic shelf circulation.Ocean Science, 6, 983-995.
[139] Roveri M., Bergamasco A., Marcello Falcieri F., Gennari R., Lugli S., Manzi V., Schreiber B.C., 2013. The origin of Messinian canyons in the Mediterranean: The role of brine-related dense shelf water cascading currents. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-4016.
[59]
Salas-de-León D.A., Monreal-Gómez M.A., Díaz-Flores M.A., Salas-Monreal D., Velasco-Mendoza H., Riverón-Enzástiga M.L., Ortiz-Zamora G., 2008. Role of near-bottom currents in the distribution of sediments within the Southern Bay of Campeche, Gulf of Mexico. Journal of Coastal Research, 24(6), 1487-1494.
[140] Ruppel C.D., Kessler J.D., 2017. The interaction of climate change and methane hydrates.Reviews of Geophysics, 55, 126-168.
[141] Saller A.H., Dunham J., Lin R., 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia.AAPG Bulletin, 90, 1585-1608.
[60]
Schaaf P., Stimac J., Siebe C., Macías J.L., 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico.Journal of Petrology, 46(6), 1243-1282.
[93]
McGowen J.H., Garner L.E., Wilkinson B.H., 1977. The Gulf Shoreline of Texas: Processes, Characteristics, and Factors in use. The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 77, p. 27.
[27]
Collins D.S., Johnson H.D., Allison P.A., Guilpain P., Damit A.R., 2017. Coupled ‘storm-flood’ depositional model: Application to the Miocene-Modern Baram Delta Province, north-west Borneo.Sedimentology, 64(5), 1203-1235.
[94]
McPherson J.G., Shanmugam G., Moiola R.J., 1987. Fan-deltas and braid deltas: Varieties of coarse-grained deltas.GSA Bulletin, 99, 331-340.
[95]
Middleton G.V.,1967. Experiments on density and turbidity currents. III. Deposition of sediment.Canadian Journal of Earth Sciences, 4, 475-505.
[96]
Middleton G.V.,1973. Johannes Walther’s Law of the correlation of fades. GSA Bulletin, 84, 979-988.
[97]
Middleton G.V.,1993. Sediment deposition from turbidity currents.Annual Review of Earth and Planetary Sciences, 21, 89-114.
[142] Sanders J.E.,1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V., (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, OK, SEPM, Special Publication, 12, 192-219.
[28]
Cowan E.A., Cai J., Powell R.D., Seramur K.C., Spurgeon V.L., 1998. Modern tidal rhythmites deposited in a deep-water estuary.Geo-Marine Letters, 18, 40-48.
[29]
Cuffey, K.M., Paterson, W.S.B., 2010. The Physics of Glaciers, Fourth Edition. Academic Press, 704 pp.
[143] Schillereff D.N., Chiverrell R.C., Macdonald N., Hooke J.M., 2014. Flood stratigraphies in lake sediments: A review.Earth-Sci Reviews, 135, 17-37.
[30]
Dallimore C.J., Imberger J., Hodges B.R., 2004. Modeling a plunging underflow.Journal of Hydraulic Engineering, 130(11), 1068-1076.
[144] Sepúlveda H.H., Valle-Levinson A., Framiñan M.B., 2004. Observations of subtidal and tidal flow in the Río de la Plata Estuary.Continental Shelf Research, 24, 509-525.
[145] Shanmugam G.,1996. High-density turbidity currents, are they sandy debris flows?Journal of Sedimentary Research, 66, 2-10.
[146] Shanmugam G.,1997. The Bouma sequence and the turbidite mind set.Earth-Science Reviews, 42, 201-229.
[147] Shanmugam G.,2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models ? A critical perspective.Marine and Petroleum Geology, 17, 285-342.
[31]
Dalrymple R.W.,1992. Tidal depositional systems. In: Walker, R.G., James, N.P., (Eds.), Facies Models: Response to Sea Level Change, GEOtext 1. Geological Association of Canada, pp. 195-218.
[148] Shanmugam G.,2002. Discussion on Mulder et al. 2001, Geo-Marine Letters, 21, 86-93. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 22, 108-111.
[149] Shanmugam G.,2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons.Marine and Petroleum Geology, 20, 471-491.
[98]
Middleton G.V., Hampton M.A., 1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H., (Eds.), Turbidites and Deep Water Sedimentation. Pacific Section SEPM, Los Angeles, California, pp. 1-38.
[32]
Dalrymple R.W., John Knight R., Lambiase J.J., 1978. Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada.Nature, 275, 100-104.
[99]
Middleton G.V., Southard J.B., 1977. Mechanics of Sediment Movement. SEPM Short Course No. 3, SEPM, Binghamton, p. 102.
[150] Shanmugam G.,2006a. Deep-water Processes and Facies Models, Implications for Sandstone Petroleum Reservoirs, Volumn 5. Elsevier, Handbook of Petroleum Exploration and Production, Amsterdam, 476 pp.
[151] Shanmugam G.,2006b. The tsunamite problem.Journal of Sedimentary Research, 76, 718-730.
[61]
Selvaraj K., Lee T.Y., Yang J.Y.T., Canuel E.A., Huang J.C., Dai M., Liu J.T., Kao S.J., 2015. Stable isotopic and biomarker evidence of terrigenous organic matter export to the deep sea during tropical storms.Marine Geology, 364, 32-42.
[152] Shanmugam G.,2008a. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration.AAPG Bulletin, 92, 443-471.
[62]
Sen Gupta B.K., Machain-Castillo M.L., 1993. Benthic foraminifera in oxygen-poor habitats.Marine Micropaleontology, 20(3-4), 183-201.
[33]
Dalrymple R.W., Knight R.J., Zaitlin B.A., Middleton G.V., 1990. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River estuary, (Bay of Fundy).Sedimentology, 37, 577-612.
[34]
Dalrymple R.W., Zaitlin B.A., Boyd R., 1992. Estuarine facies models: Conceptual basis and stratigraphic implications.Journal of Sedimentary Petrology, 62, 1130-1146.
[153] Shanmugam G.,2008b. Chapter 5 Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A., (Eds.), Contourites, Developments in Sedimentology, Volumn 60. Elsevier, Amsterdam, pp. 59-81.
[35]
Daly R.A.,1936. Origin of submarine "canyons". American Journal of Science, Ser. 5, 31, 401-420.
[100] Migeon S.,2000. Dunes géantes et levées sédimentaires en domainemarin profond: Approche morphologique, sismique et sédimentologique. Ph.D. Thesis. Université Bordeaux 1, Talence, France, 288 pp.
[36]
de Jong M.P.C., Battjes J.A., 2004. Low-frequency sea waves generated by atmospheric convection cells.Journal of Geophysical Research: Oceans, 109, C01011.
[154] Shanmugam G.,2012. New Perspectives on Deep-water Sandstones, Origin, Recognition, Initiation, and Reservoir Quality. In: Handbook of Petroleum Exploration and Production, Volumn 9. Elsevier, Amsterdam, 524 pp.
[155] Shanmugam G.,2013. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands.AAPG Bulletin, 97, 767-811.
[156] Shanmugam G.,2015. The landslide problem. Journal of Palaeogeography, 4(2), 109-166.
[101] Mikhailov V.N., Kravtsova V.I., Isupova M.V., 2015. Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River (Mozambique).Water Resources, 42(2), 170-185.
[37]
Dierssen H.M., Zimmerman R.C., Burdige D.J., 2009. Optics and remote sensing of Bahamian carbonate sediment whitings and potential relationship to wind-driven Langmuir circulation.Biogeosciences, 6, 487-500.
[157] Shanmugam G.,2016a. Submarine fans: A critical retrospective (1950-2015).Journal of Palaeogeography, 5(2), 110-184.
Enos P.,1977. Flow regimes in debris flow.Sedimentology, 24, 133-142.
[158] Shanmugam G.,2016b. The contourite problem. In: Mazumder, R., (Ed.), Sediment Provenance, Chapter 9. Elsevier, pp. 183-254.
[159] Shanmugam G.,2016c. The seismite problem.Journal of Palaeogeorapghy, 5(4), 318-362.
[160] Shanmugam G.,2017a. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems.Journal of Palaeogeorapghy, 6(4), 251-320.
[161] Shanmugam G.,2017b. Contourites: Physical oceanography, process sedimentology, and petroleum geology.Petroleum Exploration and Development, 44(2), 183-216.
[63]
Solari L.A., Torres de León R., Hernández Pineda G., Solé J., Solís-Pichardo G., Henández-Treviño T., 2007. Tectonic significance of Cretaceous-Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico.GSA Bulletin, 119(9), 1265-1279.
[40]
Fairbridge R.W.,1980. The estuary: Its definition and geodynamic cycle. In: Olausson, E., Cato, I., (Eds.), Chemistry and Geochemistry of Estuaries. Wiley, New York, pp. 1-35.
[64]
Stuiver M., Reimer P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program.Radiocarbon, 35(1), 215-230.
[102] Milliman J.D.,2001. River inputs. In: Steele, J.H., Thorpe, S.A., Turekian, K.K., (Eds.), Encyclopedia of Ocean Sciences. Academic Press, pp. 2419-2427.
[41]
Fan H., Huang H., Zeng T.Q., Wang K., 2006. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River delta, China.Geomorphology, 74, 124-136.
[42]
Fang G., Yang J., 1985. A two-dimensional numerical model of the tidal motions in the Bohai Sea.Chinese Journal of Oceanology and Limnology, 3(2), 135-152.
[162] Shanmugam G.,2018a. Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development: Discussion. AAPG Bulletin, 102, in press.
[65]
Tapia-Fernandez H.J., Armstrong-Altrin J.S., Selvaraj K., 2017. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, southwestern Gulf of Mexico, Mexico.Journal of South American Earth Sciences, 76, 346-361.
[163] Shanmugam G.,2018b. A global satellite survey of density plumes at river mouths and at other environments: Implications for external controls, hyperpycnal flows, submarine fans, and deep-water petroleum reservoirs. Petroleum Exploration and Development, 45 (4), in press.
[164] Shanmugam G.,2018c. Slides, slumps, debris flows, turbidity currents, hyperpycnal flows, and bottom currents. In: Cochran, J.K., (Ed.), Encyclopedia of Ocean Sciences, 3nd Edition. Elsevier, in press.
[103] Milliman J.D., Lin S.W., Kao S.J., Liu J.P., Liu C.S., Chiu J.K., Lin Y.C., 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindule, Taiwan, July 2004.Geology, 35(9), 779-782.
[104] Milliman J.D., Meade R.H., 1983. World-wide delivery of river sedment to the oceans. The Journal of Geology, 91, 1-21.
[166] Shanmugam G., Damuth J.E., Moiola R.J., 1985. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments?Geology, 13, 234-237.
[105] Milliman J.D., Shen H., Yang Z., Meade R.H., 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf.Continental Shelf Research, 4, 37-45.
[168] Shanmugam G., Poffenberger M., Toro Alava J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador.AAPG Bulletin, 84, 652-682.
[106] Mohrig D., Whipple K.X., Hondzo M., Ellis C., Parker G., 1998. Hydroplaning of subaqueous debris flows.GSA Bulletin, 110, 387-394.
[107] Moore D.,1966. Deltaic sedimentation.Earth-Science Reviews, 1, 87-104.
[66]
Tawfik H.A., Salah M.K., Maejima W., Armstrong-Altrin J.S., Abdel-Hameed A.-M.T., El Ghandour M.M., Ruffell A., 2017. Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt.Geological Journal
(in press). DOI: 10.1002/gj.3025.
[67]
Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London.
[169] Shanmugam G., Shrivastava S.K., Das B., 2009. Sandy debritesand tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications.Journal of Sedimentary Research, 79, 736
[108] Morales de Luna T., Fernández Nieto E.D., Castro Díaz M.J., 2017. Derivation of a multilayer approach to model suspended sediment transport: Application to hyperpycnal and hypopycnal plumes.Communications in Computational Physics, 22(5), 1439-1485.
[109] Mulder T., Migeon S., Savoye B., Faugères J.-C., 2001. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 21, 86-93.
[68]
Tostevin R., Shields G.A., Tarbuck G.M., He T., Clarkson M.O., Wood R.A., 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings.Chemical Geology, 438, 146-162.
[43]
Farre J.A.,McGregor, B.A., Ryan, W.B.F., Robb, J.M., 1983. Breaching the shelf-break: Passage from youthful to mature phase in submarine canyon evolution. In: Stanley, D.J., Moore, G.T., (Eds.), The shelf-break: Critical interface on continental margins. Society of Economic Paleontologists and Mineralogists Special Publication, 33, pp. 25-39.
[44]
Fisher R.V., Mattinson J.M., 1968. Wheeler gorge turbidite-conglomerate series California ? inverse grading.Journal of Sedimentary Petrology, 38, 1013-1023.
[45]
Forel F.A.,1885. Les ravins sous-lacustres des fleuves glaciaires.Comptes Rendus de l'Académie des Sciences Paris, 101(16), 725-728.
[110] Mulder T., Migeon S., Savoye B., Faugères J.-C., 2002. Reply to discussion by Shanmugam on Mulderet al.(2001, Geo-Marine Letters, 21, 86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 22, 112-120.
[46]
Forel F.A.,1892. Le Léman: Monographie Limnologique. F. Rouge, Lausanne, Switzerland, Volumn 1, 543 pp.
[47]
Fossati M., Cayocca F., Piedra-Cueva I., 2014. Fine sediment dynamics in the Río de la Plata.Advances in Geosciences, 39, 75-80.
[111] Mulder T., Syvitski J.P.M., 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans.The Journal of Geology, 103, 285-299.
[48]
Fossati M., Piedra-Cueva I., 2013. A 3D hydrodynamic numerical model of the Río de la Plata and Montevideos coastal zone.Applied Mathematical Modelling, 37, 1310-1332.
[49]
Frami��an M.B., Brown O.B., 1996. Study of the Río de la Plata Turbidity Front, Part I: Spatial and Temporal Distribution.Continental Shelf Research, 16, 1259-1282.
[50]
Galay V.,1987. Erosion and Sedimentation in the Nepal Himalaya. Kefford Press, Singapore, 10, 11.
[51]
Galloway W.E.,1976. Sediments and stratigraphic framework of the Copper River fan-delta, Alaska.Journal of Sedimentary Petrology, 46, 726-737.
[112] Mulder T., Syvitski J.P.M., Migeon S., Faugères J.-C., Savoye B., 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review.Marine and Petroleum Geology, 20, 861-882.
[113] Münchow A.,1998. Tidal currents in a topographically complex channel.Continental Shelf Research, 18, 561-584.
[114] Mutti E.,1992. Turbidite Sandstones. Agip Special Publication, Milan, Italy, 275 pp.
[115] Mutti E.,2009. The future of field-based stratigraphic and sedimentologic studies from a personal perspective.Journal of Mediterranean Earth Sciences, 1, 89-90.
[69]
Tzifas I.T., Misaelides P., Godelitsas A., Gamaletsos P.N., Nomikou P., Karydas A.G., Kantarelou V., Papadopoulos A., 2017. Geochemistry of coastal sands of eastern Mediterranean: The case of Nisyros volcanic materials. Chemie der Erde - Geochemistry, 77, 487-501.
[70]
Varghese T.I., Nageshrao P.T., Raghavendramurthy N., Ramasamy N., 2018. Sediment geochemistry of coastal environments, southern Kerala, India: Implication for provenance.Arabian Journal of Geosciences, 11(3), 61.
[71]
Verma S.P.,2001. Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Rio San Juan, north-central Mexican volcanic belt. International Geology Review, 43(6), 475-493.
[72]
Verma S.P., Armstrong-Altrin J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings.Sedimentary Geology, 332(1), 1-12.
[116] Mutti E., Davoli G., Tinterri R., 1994. Flood-related gravity-flow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications. In: Posamentier, H.W., Mutti, E., (Eds.), Second High-Resolution Sequence Stratigraphy Conference (Tremp, Abstract Book), pp. 137-143.
[73]
Verma S.P., Díaz-González L., Armstrong-Altrin J.S., 2016a. Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments.Earth Science Informatics, 9(2), 151-165.
[117] Mutti E., Davoli G., Tinterri R., Zavala C., 1996. The importance of fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins.Memorie di Scienze Geologiche, 48, 223-291.
[118] NASA (National Aeronautics and Space Administration), 2017. Earth Observatory. Accessed October 8, 2017. https://earthobservatory.nasa.gov/.
[119] NOAA (National Oceanic and Atmospheric Administration) Fisheries Glossary, 2006. River Plume. NOAA Technical Memorandum NMFS-F/SPO-69. Revised Edition, U.S. Department of Commerce, 71 pp.
[120] Normark W.R., Carlson P.R., 2003. Giant submarine canyons: Is size any clue to their importance in the rock record?GSA Special Paper, 370, 175-190.
[74]
Verma S.P., Torres-Sánchez D., Velasco-Tapia F., Subramanyam K.S.V., Manikyamba C., Bhutani R., 2016b. Geochemistry and petrogenesis of extension-related magmas close to the volcanic front of the central part of the Trans-Mexican Volcanic Belt.Journal of South American Earth Sciences, 72, 126-136.
[121] Ogston A.S., Cacchione D.A., Sternberg R.W., Kineke G.C., 2000. Observations of storm and river flood-driven sediment transport on the northern California continental shelf.Continental Shelf Research, 20, 2141-2162.
Wang Z.W., Fu X.G., Feng X.L., Song C.Y., Wang D., Chen W.B., Zeng S.Q., 2017a. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: Implications for palaeoenvironment and palaeoclimate.Geological Journal, 52(2), 282-297.
[52]
Gao S., Wang D., Yang Y., Zhou L., Zhao Y., Gao W., Han Z., Yu Q., Li G., 2015. Holocene sedimentary systems on a broad continental shelf with abundant river input: Process-product relationships. In: Clift, P.D., Harff, J., Wu, J., Qui, Y., (Eds.), River-Dominated Shelf Sediments of East Asian Seas. Geological Society, London, Special Publications, 429, 223-259.
[123] Palanques A., Durrieu de Madron X., Puig P., Fabres J., Guillén J., Calafat A., Canals M., Heussner S., Bonnin J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading.Marine Geology, 234, 43-61.
[53]
Gao W., Li G., Wang X., Sun T., Liu Y., Cao L., 2014. Sedimentary characteristics of the hyperpycnal flow in the Modern Yellow River Delta. Indian Journal of Geo-Marine Sciences, 43(8), 1438-1448.
Gladstone C., Pritchard D., 2010. Patterns of deposition from experimental turbidity currents with reversing buoyancy.Sedimentology, 57, 53-84.
[56]
Glossary of Coastal Terminology, 1998. Plunging Wave. Department of Ecology Publication No. 98-105. Department of Ecology, State of Washington.
[124] Pan S., Liu H., Zavala C., Liu C., Liang S., Zhang Q., Bai Z., 2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China.Petroleum Exploration and Development, 44(6), 911-922.
[125] Parker G., Toniolo H., 2007. Note on the analysis of plunging of density flows. Journal of Hydraulic Engineering, 133, 690-694.
[126] Parsons J.D., Bush J.W.M., Syvitski J.P.M., 2001. Hyperpycnal plume formationfrom riverine outfl ows with small sediment concentrations.Sedimentology, 48, 465-478.
[57]
Gonzalez-Silvera A., Santamaria-del-Angel E., Millán-Nú��ez R., 2006. Spatial and temporal variability of the Brazil-Malvinas Confluence and the La Plata Plume as seen by SeaWiFS and AVHRR imagery.Journal of Geophysical Research, 111, C06010.
[127] Paull C.K., Ussler III.W., Borowski W.S., Spiess F.N., 1995. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates.Geology, 23(1), 89-92.
[58]
Guo L.C., van der Wegen M., Jay D.A., Matte P., Wang Z.B., Roelvink D., He Q., 2015. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary.Journal of Geophysical Research: Oceans, 120, 3499-3521.
[59]
Guo L.C., van der Wegen M., Roelvink J.A., He Q., 2014. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics.Journal of Geophysical Research: Earth Surface, 119, 2315-2334.
[76]
Wang Z.W., Wang J., Fu X.G., Feng X.L., Wang D., Song C.Y., Chen W.B., Zeng S.Q., 2017b. Petrography and geochemistry of Upper Triassic sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, Tibet: Implications for provenance, source area weathering, and tectonic setting.Island Arc, 26(4), e12191.
[60]
Hampton M.A.,1972. The role of subaqueous debris flows in generating turbidity currents.Journal of Sedimentary Petrology, 42, 775-793.
[61]
Harris P.T., Whiteway T., 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins.Marine Geology, 285, 69-86
[128] Peliz A., Marchchesiello P., Santos A.M.P., Dubert J., Teles-Machado A., Marta-Almeida M., 2009. Surface circulation in the Gulf of Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current.Journal of Geophysical Research: Oceans, 114, C03011.
[129] Petter A.L., Steel R.J., 2006. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, central basin, Spitsbergen.AAPG Bulletin, 90, 1451-1472.
[62]
Hawati P., Nugroho Sugianto D., Anggoro S., Wirasatriya A., Widada S., 2017. Waves induce sediment transport at coastal region of Timbulsloko Demak. IOP Conference Series.Earth and Environmental Science, 55(1), 012048.
[63]
Hoitink A.J.F., Jay D.A., 2016. Tidal river dynamics: Implications for deltas.Reviews of Geophysics, 54, 240-272.
[64]
Hollister C.D.,1967. Sediment distribution and deep circulation in the western North Atlantic. Ph.D. Dissertation. Columbia University, New York, 467 pp.
[65]
Hori K.I., Zhao Q., Wang P., 2002. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China.Sedimentary Geology, 146, 249-264.
[130] Pierce L.E.R.,2012. Poverty Shelf, New Zealand from the Holocene to Present: Stratigraphic Development and Event Layer Preservation in Response to Sediment Supply, Tectonics and Climate. Ph.D. Dissertation. Williamsburg, VA, The College of William & Mary, 274 pp.
[66]
Howe J.A., Stoker M.S., Woolfe K.J., 2001. Deep-marine seabed erosion and gravel lags in the northwestern Rockall Trough, North Atlantic Ocean.Journal of the Geological Society, the Geological Society of London, 158, 427-438.
[67]
Hu C.H., Ji Z.W., Wang T., 1998. Dynamic characteristics of sea currents and sediment dispersion in the Yellow River Estuary.International Journal of Sediment Research, 13(2), 20-30.
[68]
Imran J., Syvitski J., 2000. Impact of extreme river events on coastal oceans.Oceanography, 13(3), 85-92.
[77]
Wang Z.W., Wang J., Fu X.G., Feng X.L., Wang D., Song C.Y., Chen W.B., Zeng S.Q., Yu F., 2017c. Provenance and tectonic setting of the Quemoco sandstones in the North Qiangtang Basin, North Tibet: Evidence from geochemistry and detrital zircon geochronology.Geological Journal
(in press). DOI: 10.1002/gj.2967.
[131] Pierson T.C., Costa J.E., 1987. A rheologic classification of subaerial sediment-water flows. In: Costa, J.E., Wieczorek, G.F., (Eds.). Debris Flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, 7, 1-12.
[69]
Jagadeesan L., Jyothibabu R., Anjusha A., Mohan A.P., Madhu N.V., Muraleedharan K.R., Sudheesh K., 2013. Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India.Progress in Oceanography, 110, 27-48.
[132] Plink-Björklund P., Steel R., 2004. Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites.Sedimentary Geology, 165, 29-52.
[133] Postma G., Nemec W., Kleinspehn K.L., 1988. Large floating clasts in turbidites, a mechanism for their emplacement.Sedimentary Geology, 58, 47-61.
[70]
Johnson A.M.,1970. Physical Processes in Geology. Freeman, Cooper and Co., San Francisco, 577 pp.
[71]
Johnson K.S., Paull C.K., Barry J.P., Chavez F.P., 2001. A decadal record of underflows from a coastal river into the deep sea.Geology, 29, 1019-1022.
[72]
Kassem A., Imran J., 2001. Simulation of turbid underflows generated by the plunging of a river. The Journal of Geology, 29(7), 655-658.
[134] Pratson L.F., Ryan W.B.F., Mountain G.S., Twichell D.C., 1994. Submarine canyon initiation by downslope-eroding sediment flows: Evidence in Late Cenozoic strata on the New Jersey continental slope.GSA Bulletin, 106, 395-412.
[135] Puig P., Palanques A., Martín J., 2014. Contemporary sediment-transport processes in submarine canyons.Annual Review of Marine Science, 6, 53-77.
[74]
Khanna D.R., Yadav P.R., 2008. Biology of Coelenterata. Discovery Publishing Pvt. Ltd., 393 pp.
[75]
Kostic S., Parker G., Marr J.G., 2002. Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water.Journal of Sedimentary Research, 72(3), 353-362.
[76]
Kostic S., Parker K., 2003. Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation.Journal of Hydraulic Research, 41(2), 141-152.
[136] Purkis S., Cavalcante G., Rohtla L., Oehlert A.M., Harris, P.M. Swart P.K., 2017. Hydrodynamic control of whitings on Great Bahama Bank.Geology, 45(10), 939-942.
[77]
Krumbein W.C., Sloss L.L., 1963. Stratigraphy and Sedimentation, 2nd Edition. San Francisco, W.H. Freeman and Company, 660 pp.
[137] Qiao L.L., Bao X.W., Wu D.X., Wang X.H., 2008. Numerical study of generation of the tidal shear front off the Yellow River mouth.Continental Shelf Research, 28(14), 1782-1790.
[78]
Lamb M.P., McElroy B., Kopriva B., Shaw J., Mohrig D., 2010. Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications.GSA Bulletin, 122, 1389-1400.
[79]
Lamb M.P., Mohrig D., 2009. Do hyperpycnal-flow deposits record river-flood dynamics?Geology, 37(12), 1067-1070.
[138] Rebesco, M., Camerlenghi, A., 2008. Contourites, Developments in Sedimentology. Developments in sedimentology, 60. Elsevier, Amsterdam, 663 pp.
[78]
Wang Z.W., Wang J., Fu X.G., Zhan W.Z., Yu F., Feng X.L., Song C.Y., Chen W.B., Zeng S.Q., 2017d. Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: Controlled by the paleoclimate, paleoenvironment, and provenance.Marine and Petroleum Geology, 88, 440-457.
[79]
Wignall P.B., Myers K.J., 1988. Interpreting benthic oxygen levels in mudrocks: A new approach.Geology, 16(5), 452-455.
[80]
Zaid S.M.,2013. Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt.Journal of African Earth Sciences, 85, 31-52.
[80]
Lamb M.P., Nittrouer J.A., Mohrig D., Shaw J., 2012. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics.Journal of Geophysical Research: Earth Surface, 117, F01002.
[81]
Zaid S.M.,2015. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting.Journal of African Earth Sciences, 102, 1-17.
[81]
Lane E.W.,1957. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material. U.S. Army Corps of Engineers, Missouri River Division, Omaha, Nebraska.
[82]
Zaid S.M., El-Badry O., Ramadan F., Mohamed M., 2015. Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: Implications for provenance and tectonic setting.Turkish Journal of Earth Sciences, 24(4), 344-364.
[83]
Zaid S.M., El-Badry O., Abdel-Fatah A.M., 2017. Provenance of pharaonic potsherds, Sharkiya Governorate, Egypt.Arabian Journal of Geosciences, 10(16), 354.
[82]
Lewis T., Lamoureux S.F., Normandeau A., Dugan H.A., 2018. Hyperpycnal flows control the persistence and flushing of hypoxic high-conductivity bottom water in a High Arctic lake.Arctic Science, 4, 26-41.
[139] Roveri M., Bergamasco A., Marcello Falcieri F., Gennari R., Lugli S., Manzi V., Schreiber B.C., 2013. The origin of Messinian canyons in the Mediterranean: The role of brine-related dense shelf water cascading currents. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-4016.
[83]
Li G.X., Tang Z.S., Yue S.H., Zhuang K.L., Wei H.L., 2001. Sedimentation in the shear front off the Yellow River mouth.Continental Shelf Research, 21(6-7), 607-625.
[140] Ruppel C.D., Kessler J.D., 2017. The interaction of climate change and methane hydrates.Reviews of Geophysics, 55, 126-168.
[141] Saller A.H., Dunham J., Lin R., 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia.AAPG Bulletin, 90, 1585-1608.
[142] Sanders J.E.,1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V., (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, OK, SEPM, Special Publication, 12, 192-219.
[143] Schillereff D.N., Chiverrell R.C., Macdonald N., Hooke J.M., 2014. Flood stratigraphies in lake sediments: A review.Earth-Sci Reviews, 135, 17-37.
[84]
Liu J.P., Li A.C., Xu K.H., Velozzi D.M., Yang Z.S., Milliman J.D., DeMaster D.J., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea.Continental Shelf Research, 26, 2141-2156.
[144] Sepúlveda H.H., Valle-Levinson A., Framiñan M.B., 2004. Observations of subtidal and tidal flow in the Río de la Plata Estuary.Continental Shelf Research, 24, 509-525.
[145] Shanmugam G.,1996. High-density turbidity currents, are they sandy debris flows?Journal of Sedimentary Research, 66, 2-10.
[146] Shanmugam G.,1997. The Bouma sequence and the turbidite mind set.Earth-Science Reviews, 42, 201-229.
[147] Shanmugam G.,2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models ? A critical perspective.Marine and Petroleum Geology, 17, 285-342.
[148] Shanmugam G.,2002. Discussion on Mulder et al. 2001, Geo-Marine Letters, 21, 86-93. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 22, 108-111.
[149] Shanmugam G.,2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons.Marine and Petroleum Geology, 20, 471-491.
[150] Shanmugam G.,2006a. Deep-water Processes and Facies Models, Implications for Sandstone Petroleum Reservoirs, Volumn 5. Elsevier, Handbook of Petroleum Exploration and Production, Amsterdam, 476 pp.
[151] Shanmugam G.,2006b. The tsunamite problem.Journal of Sedimentary Research, 76, 718-730.
[152] Shanmugam G.,2008a. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration.AAPG Bulletin, 92, 443-471.
[153] Shanmugam G.,2008b. Chapter 5 Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A., (Eds.), Contourites, Developments in Sedimentology, Volumn 60. Elsevier, Amsterdam, pp. 59-81.
[85]
Liu J.T., Wang Y.H., Yang R.J., Hsu R.T., Kao S.J., Lin H.L., Kuo F.H., 2012. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon.Journal of Geophysical Research: Oceans, 117, C04033.
[86]
Liu K.B., Sun S., Jiang X., 1992. Environmental change in the Yangtze River Delta since 12,000 Years B.P.Quaternary Research, 38, 32-45.
[154] Shanmugam G.,2012. New Perspectives on Deep-water Sandstones, Origin, Recognition, Initiation, and Reservoir Quality. In: Handbook of Petroleum Exploration and Production, Volumn 9. Elsevier, Amsterdam, 524 pp.
[155] Shanmugam G.,2013. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands.AAPG Bulletin, 97, 767-811.
[156] Shanmugam G.,2015. The landslide problem. Journal of Palaeogeography, 4(2), 109-166.
[157] Shanmugam G.,2016a. Submarine fans: A critical retrospective (1950-2015).Journal of Palaeogeography, 5(2), 110-184.
[158] Shanmugam G.,2016b. The contourite problem. In: Mazumder, R., (Ed.), Sediment Provenance, Chapter 9. Elsevier, pp. 183-254.
[159] Shanmugam G.,2016c. The seismite problem.Journal of Palaeogeorapghy, 5(4), 318-362.
[160] Shanmugam G.,2017a. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems.Journal of Palaeogeorapghy, 6(4), 251-320.
[161] Shanmugam G.,2017b. Contourites: Physical oceanography, process sedimentology, and petroleum geology.Petroleum Exploration and Development, 44(2), 183-216.
[87]
Lu S., Tong C.F., Lee D.Y., Zheng J.H., Shen J., Zhang W., Yan Y.X., 2015. Propagation of tidal waves up in Yangtze Estuary during the dry season.Journal of Geophysical Research: Oceans, 120, 6445-6473.
[162] Shanmugam G.,2018a. Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development: Discussion. AAPG Bulletin, 102, in press.
[88]
Luo Z., Zhu J., Wu H., Li X., 2017. Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas. Journal of Geophysical Research: Oceans, 122, 10,073-10,090. https://doi.org/10.1002/2017JC013215.
[89]
Marr J.G., Harff P.A., Shanmugam G., Parker G., 2001. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures.GSA Bulletin, 113, 1377-1386.
[163] Shanmugam G.,2018b. A global satellite survey of density plumes at river mouths and at other environments: Implications for external controls, hyperpycnal flows, submarine fans, and deep-water petroleum reservoirs. Petroleum Exploration and Development, 45 (4), in press.
[164] Shanmugam G.,2018c. Slides, slumps, debris flows, turbidity currents, hyperpycnal flows, and bottom currents. In: Cochran, J.K., (Ed.), Encyclopedia of Ocean Sciences, 3nd Edition. Elsevier, in press.
[166] Shanmugam G., Damuth J.E., Moiola R.J., 1985. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments?Geology, 13, 234-237.
[90]
Martín-Chivelet, J., Fregenal-Martínez, M.A., Chacón, B., 2008. Chapter 10 Traction structures in contourites. In: Rebesco, M., Camerlenghi, A., (Eds.), Contourites. Developments in Sedimentology, 60, Elsevier, Amsterdam, pp. 159-182.
[168] Shanmugam G., Poffenberger M., Toro Alava J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador.AAPG Bulletin, 84, 652-682.
[169] Shanmugam G., Shrivastava S.K., Das B., 2009. Sandy debritesand tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications.Journal of Sedimentary Research, 79, 736
[91]
Masunaga E., Hommaa H., Yamazaki H., Fringer O.B., Nagai T., Kitade Y., Okayasu A., 2015. Mixing and sediment resuspension associated with internal bores in a shallow bay.Continental Shelf Research, 110, 85-99.
[92]
Matano R.P., Palma E.D., Piola A.R., 2010. The influence of the Brazil and Malvinas Currents on the southwestern Atlantic shelf circulation.Ocean Science, 6, 983-995.
[93]
McGowen J.H., Garner L.E., Wilkinson B.H., 1977. The Gulf Shoreline of Texas: Processes, Characteristics, and Factors in use. The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 77, p. 27.
[94]
McPherson J.G., Shanmugam G., Moiola R.J., 1987. Fan-deltas and braid deltas: Varieties of coarse-grained deltas.GSA Bulletin, 99, 331-340.
[95]
Middleton G.V.,1967. Experiments on density and turbidity currents. III. Deposition of sediment.Canadian Journal of Earth Sciences, 4, 475-505.
[96]
Middleton G.V.,1973. Johannes Walther’s Law of the correlation of fades. GSA Bulletin, 84, 979-988.
[97]
Middleton G.V.,1993. Sediment deposition from turbidity currents.Annual Review of Earth and Planetary Sciences, 21, 89-114.
[98]
Middleton G.V., Hampton M.A., 1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H., (Eds.), Turbidites and Deep Water Sedimentation. Pacific Section SEPM, Los Angeles, California, pp. 1-38.
[99]
Middleton G.V., Southard J.B., 1977. Mechanics of Sediment Movement. SEPM Short Course No. 3, SEPM, Binghamton, p. 102.
[100] Migeon S.,2000. Dunes géantes et levées sédimentaires en domainemarin profond: Approche morphologique, sismique et sédimentologique. Ph.D. Thesis. Université Bordeaux 1, Talence, France, 288 pp.
[101] Mikhailov V.N., Kravtsova V.I., Isupova M.V., 2015. Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River (Mozambique).Water Resources, 42(2), 170-185.
[102] Milliman J.D.,2001. River inputs. In: Steele, J.H., Thorpe, S.A., Turekian, K.K., (Eds.), Encyclopedia of Ocean Sciences. Academic Press, pp. 2419-2427.
[103] Milliman J.D., Lin S.W., Kao S.J., Liu J.P., Liu C.S., Chiu J.K., Lin Y.C., 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindule, Taiwan, July 2004.Geology, 35(9), 779-782.
[104] Milliman J.D., Meade R.H., 1983. World-wide delivery of river sedment to the oceans. The Journal of Geology, 91, 1-21.
[105] Milliman J.D., Shen H., Yang Z., Meade R.H., 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf.Continental Shelf Research, 4, 37-45.
[106] Mohrig D., Whipple K.X., Hondzo M., Ellis C., Parker G., 1998. Hydroplaning of subaqueous debris flows.GSA Bulletin, 110, 387-394.
[107] Moore D.,1966. Deltaic sedimentation.Earth-Science Reviews, 1, 87-104.
[108] Morales de Luna T., Fernández Nieto E.D., Castro Díaz M.J., 2017. Derivation of a multilayer approach to model suspended sediment transport: Application to hyperpycnal and hypopycnal plumes.Communications in Computational Physics, 22(5), 1439-1485.
[109] Mulder T., Migeon S., Savoye B., Faugères J.-C., 2001. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 21, 86-93.
[110] Mulder T., Migeon S., Savoye B., Faugères J.-C., 2002. Reply to discussion by Shanmugam on Mulderet al.(2001, Geo-Marine Letters, 21, 86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 22, 112-120.
[111] Mulder T., Syvitski J.P.M., 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans.The Journal of Geology, 103, 285-299.
[112] Mulder T., Syvitski J.P.M., Migeon S., Faugères J.-C., Savoye B., 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review.Marine and Petroleum Geology, 20, 861-882.
[113] Münchow A.,1998. Tidal currents in a topographically complex channel.Continental Shelf Research, 18, 561-584.
[114] Mutti E.,1992. Turbidite Sandstones. Agip Special Publication, Milan, Italy, 275 pp.
[115] Mutti E.,2009. The future of field-based stratigraphic and sedimentologic studies from a personal perspective.Journal of Mediterranean Earth Sciences, 1, 89-90.
[116] Mutti E., Davoli G., Tinterri R., 1994. Flood-related gravity-flow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications. In: Posamentier, H.W., Mutti, E., (Eds.), Second High-Resolution Sequence Stratigraphy Conference (Tremp, Abstract Book), pp. 137-143.
[117] Mutti E., Davoli G., Tinterri R., Zavala C., 1996. The importance of fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins.Memorie di Scienze Geologiche, 48, 223-291.
[118] NASA (National Aeronautics and Space Administration), 2017. Earth Observatory. Accessed October 8, 2017. https://earthobservatory.nasa.gov/.
[119] NOAA (National Oceanic and Atmospheric Administration) Fisheries Glossary, 2006. River Plume. NOAA Technical Memorandum NMFS-F/SPO-69. Revised Edition, U.S. Department of Commerce, 71 pp.
[120] Normark W.R., Carlson P.R., 2003. Giant submarine canyons: Is size any clue to their importance in the rock record?GSA Special Paper, 370, 175-190.
[121] Ogston A.S., Cacchione D.A., Sternberg R.W., Kineke G.C., 2000. Observations of storm and river flood-driven sediment transport on the northern California continental shelf.Continental Shelf Research, 20, 2141-2162.
[123] Palanques A., Durrieu de Madron X., Puig P., Fabres J., Guillén J., Calafat A., Canals M., Heussner S., Bonnin J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading.Marine Geology, 234, 43-61.
[124] Pan S., Liu H., Zavala C., Liu C., Liang S., Zhang Q., Bai Z., 2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China.Petroleum Exploration and Development, 44(6), 911-922.
[125] Parker G., Toniolo H., 2007. Note on the analysis of plunging of density flows. Journal of Hydraulic Engineering, 133, 690-694.
[126] Parsons J.D., Bush J.W.M., Syvitski J.P.M., 2001. Hyperpycnal plume formationfrom riverine outfl ows with small sediment concentrations.Sedimentology, 48, 465-478.
[127] Paull C.K., Ussler III.W., Borowski W.S., Spiess F.N., 1995. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates.Geology, 23(1), 89-92.
[128] Peliz A., Marchchesiello P., Santos A.M.P., Dubert J., Teles-Machado A., Marta-Almeida M., 2009. Surface circulation in the Gulf of Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current.Journal of Geophysical Research: Oceans, 114, C03011.
[129] Petter A.L., Steel R.J., 2006. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, central basin, Spitsbergen.AAPG Bulletin, 90, 1451-1472.
[130] Pierce L.E.R.,2012. Poverty Shelf, New Zealand from the Holocene to Present: Stratigraphic Development and Event Layer Preservation in Response to Sediment Supply, Tectonics and Climate. Ph.D. Dissertation. Williamsburg, VA, The College of William & Mary, 274 pp.
[131] Pierson T.C., Costa J.E., 1987. A rheologic classification of subaerial sediment-water flows. In: Costa, J.E., Wieczorek, G.F., (Eds.). Debris Flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, 7, 1-12.
[132] Plink-Björklund P., Steel R., 2004. Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites.Sedimentary Geology, 165, 29-52.
[133] Postma G., Nemec W., Kleinspehn K.L., 1988. Large floating clasts in turbidites, a mechanism for their emplacement.Sedimentary Geology, 58, 47-61.
[134] Pratson L.F., Ryan W.B.F., Mountain G.S., Twichell D.C., 1994. Submarine canyon initiation by downslope-eroding sediment flows: Evidence in Late Cenozoic strata on the New Jersey continental slope.GSA Bulletin, 106, 395-412.
[135] Puig P., Palanques A., Martín J., 2014. Contemporary sediment-transport processes in submarine canyons.Annual Review of Marine Science, 6, 53-77.
[136] Purkis S., Cavalcante G., Rohtla L., Oehlert A.M., Harris, P.M. Swart P.K., 2017. Hydrodynamic control of whitings on Great Bahama Bank.Geology, 45(10), 939-942.
[137] Qiao L.L., Bao X.W., Wu D.X., Wang X.H., 2008. Numerical study of generation of the tidal shear front off the Yellow River mouth.Continental Shelf Research, 28(14), 1782-1790.
[138] Rebesco, M., Camerlenghi, A., 2008. Contourites, Developments in Sedimentology. Developments in sedimentology, 60. Elsevier, Amsterdam, 663 pp.
[139] Roveri M., Bergamasco A., Marcello Falcieri F., Gennari R., Lugli S., Manzi V., Schreiber B.C., 2013. The origin of Messinian canyons in the Mediterranean: The role of brine-related dense shelf water cascading currents. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-4016.
[140] Ruppel C.D., Kessler J.D., 2017. The interaction of climate change and methane hydrates.Reviews of Geophysics, 55, 126-168.
[141] Saller A.H., Dunham J., Lin R., 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia.AAPG Bulletin, 90, 1585-1608.
[142] Sanders J.E.,1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V., (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, OK, SEPM, Special Publication, 12, 192-219.
[143] Schillereff D.N., Chiverrell R.C., Macdonald N., Hooke J.M., 2014. Flood stratigraphies in lake sediments: A review.Earth-Sci Reviews, 135, 17-37.
[144] Sepúlveda H.H., Valle-Levinson A., Framiñan M.B., 2004. Observations of subtidal and tidal flow in the Río de la Plata Estuary.Continental Shelf Research, 24, 509-525.
[145] Shanmugam G.,1996. High-density turbidity currents, are they sandy debris flows?Journal of Sedimentary Research, 66, 2-10.
[146] Shanmugam G.,1997. The Bouma sequence and the turbidite mind set.Earth-Science Reviews, 42, 201-229.
[147] Shanmugam G.,2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models ? A critical perspective.Marine and Petroleum Geology, 17, 285-342.
[148] Shanmugam G.,2002. Discussion on Mulder et al. 2001, Geo-Marine Letters, 21, 86-93. Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters, 22, 108-111.
[149] Shanmugam G.,2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons.Marine and Petroleum Geology, 20, 471-491.
[150] Shanmugam G.,2006a. Deep-water Processes and Facies Models, Implications for Sandstone Petroleum Reservoirs, Volumn 5. Elsevier, Handbook of Petroleum Exploration and Production, Amsterdam, 476 pp.
[151] Shanmugam G.,2006b. The tsunamite problem.Journal of Sedimentary Research, 76, 718-730.
[152] Shanmugam G.,2008a. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration.AAPG Bulletin, 92, 443-471.
[153] Shanmugam G.,2008b. Chapter 5 Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A., (Eds.), Contourites, Developments in Sedimentology, Volumn 60. Elsevier, Amsterdam, pp. 59-81.
[154] Shanmugam G.,2012. New Perspectives on Deep-water Sandstones, Origin, Recognition, Initiation, and Reservoir Quality. In: Handbook of Petroleum Exploration and Production, Volumn 9. Elsevier, Amsterdam, 524 pp.
[155] Shanmugam G.,2013. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands.AAPG Bulletin, 97, 767-811.
[156] Shanmugam G.,2015. The landslide problem. Journal of Palaeogeography, 4(2), 109-166.
[157] Shanmugam G.,2016a. Submarine fans: A critical retrospective (1950-2015).Journal of Palaeogeography, 5(2), 110-184.
[158] Shanmugam G.,2016b. The contourite problem. In: Mazumder, R., (Ed.), Sediment Provenance, Chapter 9. Elsevier, pp. 183-254.
[159] Shanmugam G.,2016c. The seismite problem.Journal of Palaeogeorapghy, 5(4), 318-362.
[160] Shanmugam G.,2017a. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems.Journal of Palaeogeorapghy, 6(4), 251-320.
[161] Shanmugam G.,2017b. Contourites: Physical oceanography, process sedimentology, and petroleum geology.Petroleum Exploration and Development, 44(2), 183-216.
[162] Shanmugam G.,2018a. Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development: Discussion. AAPG Bulletin, 102, in press.
[163] Shanmugam G.,2018b. A global satellite survey of density plumes at river mouths and at other environments: Implications for external controls, hyperpycnal flows, submarine fans, and deep-water petroleum reservoirs. Petroleum Exploration and Development, 45 (4), in press.
[164] Shanmugam G.,2018c. Slides, slumps, debris flows, turbidity currents, hyperpycnal flows, and bottom currents. In: Cochran, J.K., (Ed.), Encyclopedia of Ocean Sciences, 3nd Edition. Elsevier, in press.
[166] Shanmugam G., Damuth J.E., Moiola R.J., 1985. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments?Geology, 13, 234-237.
[168] Shanmugam G., Poffenberger M., Toro Alava J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador.AAPG Bulletin, 84, 652-682.
[169] Shanmugam G., Shrivastava S.K., Das B., 2009. Sandy debritesand tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications.Journal of Sedimentary Research, 79, 736