Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution
Angana Chaudhuria, Santanu Banerjeea, Emilia Le Perab
a Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India;
b Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della, Calabria, 87036 Rende (Cosenza), Italy;
This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition (Quartz-Feldspar-Lithic (QFL) fragment), Zircon-Tourmaline-Rutile (ZTR) index, and mineral chemistry of heavy detrital minerals of the framework. The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic, Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27% in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances. Chemistry of ilmenites in the Jhumara Formation reveals its derivation from dual felsic igneous and metabasic source, while those in Jhuran and Bhuj Formations indicate a metabasic derivation. Chemistry of garnet reveals predominantly Fe-rich (almandine) variety of metabasic origin. X-ray microscopic study provides the percentage of heavy minerals ranging from 3% to 5.26%. QFL detrital modes reflect the evolution of the basin from an active rift to a passive margin basin during the Mesozoic. Integration of results from QFL modal composition of the sandstones, heavy mineral analysis and mineral chemistry, suggests sediment supply from both northern and eastern highlands during the Middle Jurassic. The uplift along the Kutch Mainland Fault in the Early Cretaceous results in curtailment of sediment input from north.
Corresponding Authors:
* Corresponding author. E-mail address: santanu@iitb.ac.in (S. Banerjee).
Cite this article:
. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution[J]. Journal of Palaeogeography, 2018, 7(3): 2-2.
. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution[J]. Journal of Palaeogeography, 2018, 7(3): 2-2.
Ahmad A.H.M., Bhat G.M., 2006. Petrofacies, provenance and diagenesis of the Dhosa Sandstone Member (Chari Formation) at Ler, Kachchh sub-basin, western India.Journal of Asian Earth Sciences, 27(6), 857-872.
[2]
Ahmad A.H.M., Noufal K.N., Masroor A.M., Tavheed K., 2014. Petrography and geochemistry of Jumara Dome sediments, Kachchh Basin: Implications for provenance, tectonic setting and weathering intensity.Chinese Journal of Geochemistry, 33(1), 9-23.
[3]
Ahmad S.A., Chaudhry M.N., 2008. A-type granites from the Nagar Parkar complex, Pakistan: Geochemistry and origin.Geological Bulletin of Punjab University, 43, 69-81.
[4]
Alberti M., Fürsich F.T., Pandey D.K., 2013. Deciphering condensed sequences: A case study from the Oxfordian (Upper Jurassic) Dhosa Oolite member of the Kachchh Basin, western India.Sedimentology, 60(2), 574-598.
[5]
Andò S., Garzanti E., 2014. Raman spectroscopy in heavy-mineral studies. In: Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N. (Eds.), Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society, London, Special Publications, vol. 386, pp. 395-412.
[6]
Andò S., Garzanti E., Padoan M., Limonta M., 2012. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis.Sedimentary Geology, 280, 165-178.
[7]
Andrews J.C., Almeida E., van der Meulen M.C., Alwood J.S., Lee C., Liu Y., Chen J., Meirer F., Feser M., Gelb J., Rudati J., Tkachuk A., Yun W., Pianetta P., 2010. Nanoscale X-ray microscopic imaging of mammalian mineralized tissue.Microscopy and Microanalysis, 16(3), 327-336.
[8]
Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., Carranza-Edwards A., Garcia D., Eby G.N., Balaram V., Cruz-Ortiz N.L., 2012. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance.Chemie der Erde - Geochemistry, 72(4), 345-362.
[9]
Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., Trejo-Ramírez E., 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeoweathering, provenance and tectonic setting.Geological Journal, 52(4), 559-582.
[10]
Armstrong-Altrin J.S., Nagarajan R., Balaram V., Natalhy-Pineda O., 2015. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting.Journal of South American Earth Sciences, 64(Part 1), 199-216.
[11]
Arora A., Banerjee S., Dutta S., 2015. Black shale in Late Jurassic Jhuran Formation of Kutch: Possible indicator of oceanic anoxic event?Journal of the Geological Society of India, 85(3), 265-278.
[12]
Arora A., Dutta S., Gogoi B., Banerjee S., 2017. The effects of igneous dike intrusion on organic geochemistry of black shale and its implications: Late Jurassic Jhuran Formation, India.International Journal of Coal Geology, 178(Supplement C), 84-99.
[13]
Arribas J., Critelli S., Le Pera E., Tortosa A., 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, central Spain).Sedimentary Geology, 133(1-2), 27-48.
[14]
Bansal U., Banerjee S., Pande K., Arora A., Meena S.S., 2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch Basin, India) and its implications. Marine and Petroleum Geology, 82, 97-117.
[15]
Basu A., Molinaroli E., 1989. Provenance characteristics of detrital opaque Fe-Ti oxide minerals.Journal of Sedimentary Petrology, 59(6), 922-934.
[16]
Basu A., Molinaroli E., 1991. Reliability and application of detrital opaque Fe-Ti oxide minerals in provenance determination. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geological Society, London, Special Publications, vol. 57, pp. 55-65.
[17]
Biswas S.K.,1977. Mesozoic rock stratigraphy of Kachchh.Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 49, 1-52.
[18]
Biswas S.K.,1981. Basin framework, Palaeo-environment and depositional history of the Mesozoic sediments of Kutch Basin, western India.Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 53, 56-85.
[19]
Biswas S.K.,1982. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch Basin.AAPG Bulletin, 66(10), 1497-1513.
[20]
Biswas S.K.,1987. Regional tectonic framework, structure and evolution of the western marginal basins of India.Tectonophysics, 135(4), 307-327.
[21]
Biswas S.K.,1991. Stratigraphy and sedimentary evolution of the Mesozoic basin of Kutch, western India. In: Tandon, S.K., Pant, C.C., Casshyap, S.M. (Eds.), Stratigraphy and Sedimentary Evolution of Western India. Gyanodaya Prakashan, Nainital, pp. 74-103.
[22]
Biswas S.K.,2005. A review of structure and tectonics of Kutch Basin, western India, with special reference to earthquakes.Current Science, 88(10), 1592-1600.
[23]
Caracciolo L., Tolosana-Delgado R., Le Pera E., von Eynatten H., Arribas J., Tarquini S., 2012. Influence of granitoid textural parameters on sediment composition: Implications for sediment generation. Sedimentary Geology, 280, 93-107.
[24]
Critelli S., Arribas J., Le Pera E., Tortosa A., Marsaglia K.M., Latter K.K., 2003. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain.Journal of Sedimentary Research, 73(1), 72-81.
[25]
Critelli S., Ingersoll R.V., 1994. Sandstone petrology and provenance of the Siwalik Group (northwestern Pakistan and western-southeastern Nepal).Journal of Sedimentary Research, 64(4a), 815-823.
[26]
Critelli S., Le Pera E., 1994. Detrital modes and provenance of Miocene sandstones and modern sands of the southern Apennines thrust-top basins (Italy).Journal of Sedimentary Research, 64(4a), 824-835.
[27]
Dickinson W.R.,1970. Interpreting detrital modes of graywacke and arkose.Journal of Sedimentary Petrology, 40(2), 695-707.
[28]
Dickinson W.R.,1985. Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites. Springer Netherlands, Dordrecht, pp. 333-361.
[29]
Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T., 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting.GSA Bulletin, 94(2), 222-235.
Dill H.G.,1998. A review of heavy minerals in clastic sediments with case studies from the alluvial-fan through the nearshore-marine environments.Earth-Science Reviews, 45(1-2), 103-132.
[32]
Dill H.G., Klosa D., 2011. Heavy mineral-based provenance analysis of Mesozoic continental-marine sediments at the western edge of the Bohemian Massif, SE Germany: With special reference to Fe-Ti minerals and the crystal morphology of heavy minerals.International Journal of Earth Sciences, 100(7), 1497-1513.
[33]
Folk R.L.,1974. Petrology of Sedimentary Rocks. Hemphill, Austin, TX.
[34]
Fursich F.T., Oschmann W., Singh I.B., Jaitly A.K., 1992. Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: Their significance for basin analysis.Journal of the Geological Society, 149(3), 313-331.
[35]
Fürsich F.T., Pandey D.K., Callomon J.H., Jaitly A.K., Singh I.B., 2001. Marker beds in the Jurassic of the Kachchh Basin, western India: Their depositional environment and sequence-stratigraphic significance.Journal of the Palaeontological Society of India, 46, 173-198.
[36]
Fürsich F.T., Singh I.B., Joachimski M., Krumm S., Schlirf M., Schlirf S., 2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): An integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data.Palaeogeography, Palaeoclimatology, Palaeoecology, 217(3-4), 289-309.
[37]
Grigsby J.D.,1992. Chemical fingerprinting in detrital ilmenite: A viable alternative in provenance research? Journal of Sedimentary Petrology, 62(2), 331-337.
[38]
Hounslow M.W., Morton A.C., 2004. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: Comparison with heavy mineral analysis.Sedimentary Geology, 171, 13-36.
[39]
Hubert J.F.,1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones.Journal of Sedimentary Petrology, 32(3), 440-450.
[40]
Ingersoll R.V., Suczek C.A., 1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49(4), 1217-1228.
[41]
Krishna J., Pathak D.B., Pandey B., Ojha J.R., 2000. Transgressive sediment intervals in the Late Jurassic of Kachchh, India.GeoResearch Forum, 6, 321-332.
[42]
Laghari A., Jan M.Q., Khan M.A., Agheem M.H., Sahito A.G., Anjum S., 2013. Petrography and major element chemistry of mafic dykes in the Nagar Parkar igneous complex, Tharparkar, Sindh.Journal of Himalayan Earth Science, 46, 1-11.
[43]
Le Pera E., Arribas J., 2004. Sand composition in an Iberian passive-margin fluvial course: The Tajo River.Sedimentary Geology, 171, 261-281.
[44]
Le Pera E., Arribas J., Critelli S., Tortosa A., 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies.Sedimentology, 48(2), 357-378.
[45]
Le Pera E., Critelli S., 1997. Sourceland controls on the composition of beach and fluvial sand of the northern Tyrrhenian coast of Calabria, Italy: Implications for actualistic petrofacies.Sedimentary Geology, 110(1-2), 81-97.
[46]
Mandal A., Koner A., Sarkar S., Tawfik H.A., Chakraborty N., Bhakta S., Bose P.K., 2016. Physico-chemical tuning of palaeogeographic shifts: Bhuj Formation, Kutch, India.Marine and Petroleum Geology, 78, 474-492.
[47]
Mange M.A., Maurer H.F.W., 1992. Heavy Minerals in Colour. Springer Netherlands, Dordrecht.
[48]
Mange M.A., Morton A.C., 2007. Chapter 13 Geochemistry of heavy minerals. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use. Developments in Sedimentology, vol. 58. Elsevier, pp. 345-391.
[49]
Meinhold G.,2010. Rutile and its applications in Earth sciences.Earth-Science Reviews, 102(1-2), 1-28.
[50]
Morton A., Chenery S., 2009. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea.Journal of Sedimentary Research, 79(7), 540-553.
[51]
Morton A., Hallsworth C., Chalton B., 2004. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance.Marine and Petroleum Geology, 21(3), 393-410.
[52]
Morton A.C., Hallsworth C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones.Sedimentary Geology, 124, 3-29.
[53]
Paikaray S., Banerjee S., Mukherji S., 2008. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering.Journal of Asian Earth Sciences, 32(1), 34-48.
[54]
Preston J., Hartley A., Mange-Rajetzky M., Hole M., May G., Buck S., Vaughan L., 2002. The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical, and sedimentological constraints.Journal of Sedimentary Research, 72(1), 18-29.
[55]
Ramakrishnan M., Vaidyanadhan R., 2008. Geology of India, Vol. 1, Geological Society of India, Bangalore, pp. 261-333.
[56]
Roy P., Bardhan S., Mitra A., Jana S.K., 2007. New Bathonian (Middle Jurassic) ammonite assemblages from Kutch, India.Journal of Asian Earth Sciences, 30(5-6), 629-651.
[57]
Saha S., Banerjee S., Burley S.D., Ghosh A., Saraswati P.K., 2010. The influence of flood basaltic source terrains on the efficiency of tectonic setting discrimination diagrams: An example from the Gulf of Khambhat, western India.Sedimentary Geology, 228(1-2), 1-13.
[58]
Singh I.B.,1989. Dhosa Oolite — A transgressive condensation horizon of Oxfordian Age in Kachchh, western India.Journal of the Geological Society of India, 34(2), 152-160.
[59]
Weibel R., Friis H., 2004. Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone, North German Basin.Sedimentary Geology, 169(3-4), 129-149.
[60]
Zack T., von Eynatten H., Kronz A., 2004. Rutile geochemistry and its potential use in quantitative provenance studies.Sedimentary Geology, 171, 37-58.
[61]
Zuffa G.G.,1985. Optical analyses of arenites: Influence of methodology on compositional results. In: Zuffa G.G. (Ed.), Provenance of Arenites. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 148. Springer Netherlands, Dordrecht, pp. 165-189.
[62]
Zuffa G.G.,1987. Unravelling hinterland and offshore palaeogeography from deep-water arenites. In: Leggett J.K., Zuffa G.G. (Eds.), Marine Clastic Sedimentology. Springer Netherlands, Dordrecht, pp. 39-61.