1 Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China. 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610059, Sichuan Province, China. 3 Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Deutschland.
Abstract Lacustrine stromatolites were widespread in the Miocene Wudaoliang Group (stromatolites of the Wudaoliang Group), northern Tibetan Plateau; but only at one location nearby the Wudaoliang Town, they occurred intensively in thick, laterally traceable beds (Wudaoliang stromatolites). Although deposited in lacustrine environment, the lack of fossils in these rocks hampers determining whether the stromatolites formed in freshwater or saline conditions. To address this problem, and in an attempt to identify criteria to distinguish differences of freshwater and saline conditions, we studied the laminae microfabrics, stable carbon and oxygen isotope ratios, rare earth element patterns and biomarkers of the stromatolites. These stromatolites can be divided into fenestral stromatolites and agglutinated stromatolites. The fabric of fenestral stromatolites is formed by microcrystalline carbonate enclosing spar-cemented, angular crystal traces. Essentially, this fabric is interpreted as pseudomorph after former formed evaporite crystals. Faecal pellets identical to that of the present-day brine shrimp Artemia, lack of other eukaryotic fossils, and stable isotopic signals point to a shallow, evaporation-dominated hypersaline lake setting. Covariation of carbon and oxygen isotopes indicates hydrologically closed conditions of the Miocene lake on northern Tibetan Plateau. However, if compared to other lacustrine carbonates of the Wudaoliang Group, the high δ13C values of the investigated Wudaoliang stromatolites reveal an additional photosynthetic effect during the deposition of the stromatolites. Furthermore, although no direct evidence is available from field observations and microfabrics, a positive europium anomaly of Wudaoliang stromatolites indicates that a palaeo-hydrothermal inflow system had existed in the outcrop area. These new results favour a hypersaline lake setting subject to hot spring inflow for the Wudaoliang stromatolites, in contrast to earlier interpretations suggesting a freshwater lake setting (e.g. Yi et al. 2008; Zeng et al. 2011). This approach may be appropriate for other lacustrine, unfossiliferous microbialites in settings where the environmental conditions are difficult to determine.
. Palaeoenvironmental setting of lacustrine stromatolites in the Miocene Wudaoliang Group, northern Tibetan Plateau[J]. , 2019, 8(3): 270-284.
. Palaeoenvironmental setting of lacustrine stromatolites in the Miocene Wudaoliang Group, northern Tibetan Plateau[J]. Journal of Palaeogeography, 2019, 8(3): 270-284.
Allwood A.,I. Burch,J. Rouchy, and M. Coleman.2013. Morphological biosignatures in gypsum: Diverse formation processes of Messinian (��6.0 Ma) gypsum stromatolites.Astrobiology 13(9): 870-886.
[2]
Arp G.,A. Reimer, and J. Reitner.2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans.Science 292(5522): 1701-1704.
[3]
Arp G.,C. Kolepka,K. Simon,V. Karius,N. Nolte, and B.T. Hansen.2013. New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany.Meteorite and Planetary Science 48(12): 2491-2516.
[4]
Arp G.,C. Ostertag-Henning S. Yuecekent,J. Reitner, and V. Thiel.2008. Methane-related microbial gypsum calcitization in stromatolites of a marine evaporative setting (Münder Formation, Upper Jurassic, Hils Syncline, North Germany).Sedimentology 55(5): 1227-1251.
[5]
Barrat J.,J. Boulegue,J. Tiercelin, and M. Lesourd.2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa.Geochimica et Cosmochimica Acta 64(2): 287-298.
[6]
Bau M.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium.Chemical Geology 93(3-4): 219-230.
[7]
Bolhar R.,M.J. Van Kranendonk.2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates.Precambrian Research 155(3-4): 229-250.
[8]
Carr A.S.,A. Boom,H.L. Grimes,B.M. Chase,M.E. Meadows, and A. Harris.2014. Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications.Organic Geochemistry 67: 72-84.
[9]
Cater J.M.1987. Sedimentology of part of the Lower Oil-Shale Group (Dinantian) sequence at Granton, Edinburgh, including the Granton “shrimp-bed”.Earth and Environmental Science Transactions of the Royal Society of Edinburgh 78(1): 29-40.
[10]
Collister J.W.,G. Rieley,B. Stern,G. Eglinton, and B. Fry.1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms.Organic Geochemistry 21: 619-627.
[11]
Cyr A.J.,B.S. Currie, and D.B. Rowley.2005. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau.The Journal of Geology 5: 517-533.
[12]
De Deckker, P. 1981. Ostracods of a thalassic saline lakes. In: Williams, W.D. (Ed.). Salt Lakes. Developments in Hydrobiology, volume 5. Springer, Dordrecht, pp. 131-144.
[13]
Demicco R.V.,L.A. Hardie.1994. Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM Atlas Series No. 1. SEPM Society for Sedimentary.
[14]
Eardley A.J.1938. Sediments of Great Salt Lake, Utah.AAPG Bulletin 22: 1305-1411.
[15]
Ficken K.J.,B. Li,D. Swain, and G. Eglinton.2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes.Organic Geochemistry 31(7-8): 745-749.
[16]
Fontes J.C.,F. Gasse,Y. Callot,J.C. Plaziat,P. Carbonel,P. Dupeuble, and I. Kaczmarska.1985. Freshwater to marine-like environments from Holocene lakes in northern Sahara.Nature 317(6038): 608.
[17]
Freytet P.,E. Verrecchia.1998. Freshwater organisms that build stromatolites: A synopsis of biocrystallization by prokaryotic and eukaryotic algae.Sedimentology 45(3): 535-563.
[18]
Freytet P.,E. Verrecchia.1999. Calcitic radial palisadic fabric in freshwater stromatolites: Diagenetic and recrystallized feature or physicochemical sinter crust?Sedimentary Geology 126(1-4): 97-102.
[19]
Gu B.,C. Schelske, and M. Hoyer.1996. Stable isotopes of carbon and nitrogen as indicators of diet and trophic structure of the fish community in a shallow hypereutrophic lake.Journal of Fish Biology 49(6): 1233-1243.
[20]
Guo N.,J. Gao,Y. He, and Y. Guo.2016. Compositae plants differed in leaf cuticular waxes between high and low altitudes.Chemistry and Biodiversity 13(6): 710-718.
[21]
Hao H.,Y. Song,L. Li,Z. Jia,Y. Wang, and Q. Liu.2015. Characteristics of breccias and C-O-Sr-S isotope geochemistry of the Duocaima Pb-Zn deposit in Tuotuohe, Qinghai Province: Implications for the Ore-forming Process.Acta Geologica Sinica (English Edition) 89(5): 1568-1587.
[22]
Hardie, L.A.,R.N. Ginsburg. 1977. Layering: The origin and environmental significance of lamination and thin bedding. In: Hardie, L.A. (Ed.). Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas. Baltimore, Studies in Geology No. 22, The Johns Hopkins University Press, Maryland, pp. 12-49.
[23]
Hoffmann B.,A. Kahmen,L.A. Cernusak,S.K. Arndt, and D. Sachse.2013. Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia.Organic Geochemistry 62: 62-67.
[24]
Hollander D.J.,J.A. McKenzie.1991. CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer.Geology 19(9): 929-932.
[25]
Hudson J.D.1970. Algal limestones with pseudomorphs after gypsum from the Middle Jurassic of Scotland.Lethaia 3(1): 11-40.
[26]
Johannesson K.H.,W.B. Lyons.1994. The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing. Limnology Oceanography 39(5): 1141-1154.
[27]
Kelts K.,M. Shahrabi.1986. Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran.Palaeogeography, Palaeoclimatology, Palaeoecology 54(1): 105-130.
[28]
Kerby N.,J.A. Raven.1985. Transport and fixation of inorganic carbon by marine algae.Advances in Botanical Research 11: 71-123.
[29]
Kuhn T.K.,E.S. Krull,A. Bowater,K. Grice, and G. Gleixner.2010. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils.Organic Geochemistry 41(2): 88-95.
[30]
Liu W.,H. Yang,H. Wang,Z. An,Z. Wang, and Q. Leng.2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau.Organic Geochemistry 83: 190-201.
[31]
Marzi R.,B. Torkelson, and R. Olson.1993. A revised carbon preference index.Organic Geochemistry 20(8): 1303-1306.
[32]
Michard A.1989. Rare earth element systematics in hydrothermal fluids.Geochimica et Cosmochimica Acta 53(3): 745-750.
[33]
Mills R.A.,H. Elderfield.1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26 N Mid-Atlantic Ridge.Geochimica et Cosmochimica Acta 59(17): 3511-3524.
[34]
Mischke S.,U. Herzschuh,Z. Sun,Z. Qiao,N. Sun, and A.M. Zander.2006. Middle Pleistocene Ostracoda from a large freshwater lake in the presently dry Qaidam Basin (NW China).Journal of Micropalaeontology 25: 57-64.
[35]
Monty C.1976. The Origin and Development of Cryptalgal Fabrics. In: Walter, M.R. (Ed.). Developments in Sedimentology. Elsevier, Amsterdam, pp. 193-249.
[36]
Niu X.,X. Liu, and W. Chen.2013. Travertine in South Bank of Dogai Coring, Tibet: Geochemical characteristics and potash geological significance.Acta Sedimentologica Sinica 31: 1031-1040 (in Chinese with English abstract).
[37]
Polissar P.J.,K.H. Freeman,D.B. Rowley,F.A. McInerney, and B.S. Currie.2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers.Earth and Planetary Science Letter 287(1-2): 64-76.
[38]
Rao Z.,Y. Wu,Z. Zhu,G. Jia, and A. Henderson.2011. Is the maximum carbon number of long-chain n-alkanes an indicator of grassland or forest? Evidence from surface soils and modern plants.Chinese Science Bulletin 56(16): 1714-1720.
[39]
Riding R.1991. Calcified Cyanobacteria. In: Riding, R. (Ed.). Calcareous Algae and Stromatolites. Springer, Berlin, Heidelberg, pp. 55-87.
[40]
Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms.Sedimentology 47: 179-214.
[41]
Rowley D.B.,B.S. Currie.2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet.Nature 7077: 677.
[42]
Surdam, R.C.,J.L. Wray. 1976. Lacustrine Stromatolites, Eocene Green River Formation, Wyoming. In: Walter, M.R. (Ed.). Developments in Sedimentology. Elsevier, Armsterdam, pp. 535-541.
[43]
Sverjensky D.A.1984. Europium redox equilibria in aqueous solution.Earth and Planetary Science Letter 67(1): 70-78.
[44]
Taft L.,U. Wiechert,F. Riedel,M. Weynell, and H. Zhang.2012. Sub-seasonal oxygen and carbon isotope variations in shells of modernRadix sp.(Gastropoda) from the Tibetan Plateau: Potential of a new archive for palaeoclimatic studies. Quaternary Science Reviews 34: 44-56.
[45]
Tian L.,V. Masson-Delmotte M. Stievenard,T. Yao, and J. Jouzel.2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes.Journal of Geophysical Research: Atmospheres 106(D22): 28081-88.
[46]
Wang C.,X. Zhao,Z. Liu,P.C. Lippert,S.A. Graham,R.S. Coe,H. Yi,L. Zhu,S. Liu, and Y. Li.2008. Constraints on the early uplift history of the Tibetan Plateau.Proceedings of the National Academy of Sciences 105(13): 4987-92.
[47]
Wang C.,Z. Liu,H. Yi,S. Liu, and X. Zhao.2002. Tertiary crustal shortening and peneplanation in the Hoh Xil region: Implications for the tectonic history of the northern Tibetan Plateau.Journal of Asian Earth Science 20(3): 211-223.
[48]
Wu Z.,P.J. Barosh,Z. Wu,D. Hu,X. Zhao, and P. Ye.2008. Vast Early Miocene lakes of the central Tibetan Plateau Miocene lakes of Tibet.Geological Society of America Bulletin 120(9-10): 1326-37.
[49]
Wu Z.,Z. Wu,D. Hu, and H. Peng.2009. Carbon and oxygen isotope changes and palaeoclimate cycles recorded by lacustrine deposits of Miocene Wudaoliang Group in northern Tibetan Plateau.Geology in China 36(5): 966-75 (in Chinese with English abstract).
[50]
Yang F.,Z.Z. Qiao,H.Q. Zhang,Y. Zhang, and Z.C. Sun.2006. Features of the Cenozoic ostracod fauna and environmental significance in Qaidam Basin.Journal of Palaeogeography (Chinese Edition) 8(2): 143-156 (in Chinese with English abstract).
[51]
Yi H.,C. Wang,S. Liu,Z. Liu, and S. Wang.2000. Sedimentary record of the planation surface in the Hoh Xil region of the northern Tibet plateau.Acta Geologica Sinica (English Edition) 74(4): 827-835.
[52]
Yi H.S.,J.H. Lin,K.K. Zhou,J.P. Li, and H.G. Huang.2008. The origin of Miocene lacustrine stromatolites in the Hoh Xil area and its palaeoclimatic implications.Journal of Mineralogy and Petrology 28(1): 106-113 (in Chinese with English abstract).
[53]
Zeng D.Y.,Z.Q. Shi,H. Zhang,Y.Y. Wang,H.L. Liu,J.F. Tian.2011. Characters and classification of Miocene lacustrine stromatolites in Wudaoliang Area, Northern Tibetan Plateau: Implications for paleoclimate.Journal of Mineralogy and Petrology 31(3): 111-119 (in Chinese with English abstract).
[54]
Zhang X.,B. Xu,F. Günther,I. Mügler,M. Lange,H. Zhao,J. Li, and G. Gleixner.2017. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry.Geochimica et Cosmochimica Acta 211: 10-27.
[55]
Zhang X.,M. Nakawo,T. Yao,J. Han, and Z. Xie.2002. Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions.Science in China Earth Sciences 45(6): 481-493.
[56]
Zhang X.F.,M.P. Zheng,W.X. Chen,C.Y. Ye,Y.B. Luo, and W.G. Kong.2015. Some new opinions concerning the genesis of the lacustrine hydrothermal deposits in Wudaoliang Formation, Eastern Hoh Xil Basin.Acta Geoscientica Sinica 36(4): 507-512 (in Chinese with English Abstract).