1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China.; 2 Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.; 3 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China.; 4 National Research Center for Geoanalysis, Beijing 100037, China.; 5 Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.; 6 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China.
Abstract Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments, and have the potential to reflect seawater chemistry indirectly. In fine-siliciclastic settings, they preferentially form in organic-rich mudstones, owing to a significant fraction of the bicarbonate required for carbonate precipitation resulted from the decomposition of organic matter in sediments. In the Member IV of the Xiamaling Formation (ca. 1.40-1.35 Ga), North China, however, carbonate concretions occur in organic-poor green silty shales (avg. TOC = ~0.1 wt%). In order to elucidate the mechanism of the concretion formation and their environmental implications, a thorough study on the petrographic and geochemical compositions of the concretions and their host rocks was conducted. Macro- to microscopic fabrics, including deformed shale laminae surrounding the concretions, “cardhouse” structures of clay minerals and calcite geodes in the concretions, indicate that these concretions are of early diagenetic origin prior to the significant compaction of clay minerals. The carbon isotope compositions of the concretions (-1.7‰ to +1.5‰) are stable and close to or slightly lower than that of the contemporaneous seawater, indicating that the bicarbonates required for the concretion formation were mainly sourced from seawater by diffusion rather than produced by methanogenesis or anoxic oxidation of methane (AOM); the rare occurrence of authigenic pyrite grains in the concretions likely indicates that bacterial sulfate reduction (BSR) did not play a significant role in their formation either. Almost all the calcite in the concretions has low Mn-Fe in nuclei but high Mn-Fe in rims with average Mn/Fe ratio close to 3.3. The calcite shows positive Ce anomalies (avg. 1.43) and low Y/Ho ratios (avg. 31). This evidence suggests that Mn reduction is the dominant process responsible for the formation of calcite rims while nitrate reduction probably triggered the precipitation of calcite nuclei. Prominence of Mn reduction in the porewater likely indicates that there was sufficient oxygen to support active Mn-redox cycling in the overlying seawater.
. Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation, North China[J]. , 2019, 8(3): 285-300.
. Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation, North China[J]. Journal of Palaeogeography, 2019, 8(3): 285-300.
Bartley J.K.,L.C. Kah.2004. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle.Geology 32(2): 129-132.
[2]
Bau M.,P. Dulski.1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater.Chemical Geology 155(1-2): 77-90.
[3]
Bau M.,P. Möller, and P. Dulski.1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling.Marine Chemistry 56(1): 123-131.
[4]
Baumgartner L.K.,R.P. Reid,C. Dupraz,A.W. Decho,D.H. Buckley,J.R. Spear,K.M. Przekop, and P.T. Visscher.2006. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries.Sedimentary Geology 185(3-4): 131-145.
[5]
Brasier M.D.,J.F. Lindsay.1998. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia.Geology 26(6): 555-558.
[6]
Byrne R.H.,E.R. Sholkovitz.1996. Chapter 158 Marine chemistry and geochemistry of the lanthanides.Handbook on the Physics and Chemistry of Rare Earths 23: 497-593.
[7]
Canfield D.E.,B. Thamdrup.2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away.Geobiology 7(4): 385-392.
[8]
Canfield D.E.,B.B. Jørgensen H. Fossing,R. Glud,J. Gundersen,N.B. Ramsing,B. Thamdrup,J.W. Hansen,L.P. Nielsen, and P.O.J. Hall.1993. Pathways of organic carbon oxidation in three continental margin sediments.Marine Geology 113(1-2): 27-40.
[9]
Cole D.B.,C.T. Reinhard,X.L. Wang,B. Gueguen,G.P. Halverson,T. Gibson,M.S.W. Hodgskiss,N.R. McKenzie,T.W. Lyons, and N.J. Planavsky.2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic.Geology 44(7): 555-558. DOI: 10.1130/G37787.1.
[10]
Curtis C.D.,M.L. Coleman, and L.G. Love.1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions.Geochimica et Cosmochimica Acta 50(10): 2321-2334.
[11]
Dale A.,C.M. John,P.S. Mozley,P.C. Smalley, and A.H. Muggeridge.2014. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes.Earth and Planetary Science Letters 394: 30-37.
[12]
Day-Stirrat R.J.,R.G. Loucks,K.L. Milliken,S. Hillier, and B.A. van der Pluijm.2008. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (USA).Sedimentary Geology 208(1-2): 27-35.
[13]
de Baar, H.J.W., C.R. German, H. Elderfield,P. van Gaans.1988. Rare earth element distributions in anoxic waters of the Cariaco Trench.Geochimica et Cosmochimica Acta 52(5): 1203-1219.
[14]
De Carlo, E.H.,W.J. Green.2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica.Geochimica et Cosmochimica Acta 66(8): 1323-1333.
[15]
Dong J.,S.H. Zhang,G.Q. Jiang,H.Y. Li, and R. Gao.2013. Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications.Precambrian Research 225: 77-85.
[16]
Dong J.,S.H. Zhang,G.Q. Jiang,Q.L. Zhao,H.Y. Li,X.Y. Shi, and J.L. Liu.2008. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock.Science in China Series D: Earth Sciences 51(9): 1330-1339.
[17]
Evans D.A.D.,R.N. Mitchell.2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna.Geology 39(5): 443-446. DOI: 10.1130/G31654.1.
[18]
Feldmann R.M.,A. Franţescu, O.D. Franţescu, A.A. Klompmaker,G. Logan Jr., C.M. Robins,C.E. Schweitzer, and D.A. Waugh.2012. Formation of lobster-bearing concretions in the Late Cretaceous Bearpaw Shale, Montana, United States, in a complex geochemical environment.Palaios 27(12): 842-856.
[19]
Fisher Q.J.,R. Raiswell, and J.D. Marshall.1998. Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England: Controls on their growth and composition.Journal of Sedimentary Research 68(5): 1034-1045.
[20]
Gaines R.R.,J.S. Vorhies.2016. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA).Sedimentology 63(3): 662-698.
[21]
German C.R.,H. Elderfield.1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules.Paleoceanography 5(5): 823-833.
[22]
German C.R.,B.P. Holliday, and H. Elderfield.1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea.Geochimica et Cosmochimica Acta 55(12): 3553-3558.
[23]
Guo H.,Y.S. Du,L.C. Kah,J.H. Huang,C.Y. Hu,H. Huang, and W.C. Yu.2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution.Precambrian Research 224: 169-183.
[24]
Gutjahr M.,M. Frank,C.H. Stirling,V. Klemm,T. van de Flierdt, and A.N. Halliday.2007. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments.Chemical Geology 242(3-4): 351-370.
[25]
Haley B.A.,G.P. Klinkhammer, and J. McManus.2004. Rare earth elements in pore waters of marine sediments.Geochimica et Cosmochimica Acta 68(6): 1265-1279.
[26]
Hendry J.P.,M.J. Pearson,N.H. Trewin, and A.E. Fallick.2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis.Sedimentology 53(3): 537-565.
[27]
Huggett J.M.,A.S. Gale, and S. Evans.2000. Carbonate concretions from the London Clay (Ypresian, Eocene) of southern England and the exceptional preservation of wood-boring communities.Journal of the Geological Society 157: 187-200.
[28]
Johnson K.S.,W.M. Berelson,K.H. Coale,T.L. Coley,V.A. Elrod,W.R. Fairey,H.D. Iams,T.E. Kilgore, and J.L. Nowicki.1992. Manganese flux from continental margin sediments in a transect through the oxygen minimum.Science 257(5074): 1242-1245.
[29]
Kah L.C.,T.W. Lyons, and T.D. Frank.2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.Nature 431(7010): 834-838.
[30]
Kim J.-H.,M.E. Torres,B.A. Haley,M. Kastner,J.W. Pohlman,M. Riedel, and Y.-J. Lee.2012. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin.Chemical Geology 291: 152-165.
[31]
Liang H.M.,X. Chen,C.S. Wang,D.K. Zhao, and H. Weissert.2016. Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: Types of carbonate concretions, carbon sources, and formation processes.Journal of Asian Earth Sciences 115: 153-169.
[32]
Lowenstein T.K.,M.N. Timofeeff,S.T. Brennan,L.A. Hardie, and R.V. Demicco.2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions.Science 294(5544): 1086-1088.
[33]
Loyd S.J.,J.A.D. Dickson,J.R. Boles, and A.K. Tripati.2014. Clumped-isotope constraints on cement paragenesis in septarian concretions.Journal of Sedimentary Research 84(12): 1170-1184.
[34]
Loyd S.J.,W.M. Berelson,T.W. Lyons,D.E. Hammond,A.K. Tripati,J.M. Eiler, and F.A. Corsetti.2012. Formation mechanisms of carbonate concretions of the Monterey Formation: Analyses of clumped isotopes, iron, sulfur and carbon.Mineralogical Magazine 76: 2036-2036.
[35]
Luo Q.Y.,N.N. Zhong,Y.N. Wang,L. Ma, and M. Li.2015. Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China.International Journal of Earth Sciences 104(7): 1701-1720.
[36]
Lyons T.W.,C.T. Reinhard, and N.J. Planavsky.2014. The rise of oxygen in Earth's early ocean and atmosphere.Nature 506(7488): 307-315.
[37]
McCoy V.E.2014. Concretions as agents of soft-tissue preservation: A review.The Paleontological Society Papers 20: 147-162.
[38]
McLennan S.M.1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes.Reviews in Mineralogy and Geochemistry 21(1): 169-200.
[39]
Meyer R.L.,N. Risgaard-Petersen, and D.E. Allen.2005. Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment.Applied and Environmental Microbiology 71(10): 6142-6149.
[40]
Mozley P.S.1989. Complex compositional zonation in concretionary siderite: Implications for geochemical studies.Journal of Sedimentary Petrology 59(5): 815-818.
[41]
Mozley P.S.,S.J. Burns.1993. Oxygen and carbon isotopic composition of marine carbonate concretions: An overview.Journal of Sedimentary Research 63(1): 73-83.
[42]
Planavsky N.,A. Bekker,O.J. Rouxel,B. Kamber,A. Hofmann,A. Knudsen, and T.W. Lyons.2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition.Geochimica et Cosmochimica Acta 74(22): 6387-6405.
[43]
Planavsky N.J.,C.T. Reinhard,X. Wang,D. Thomson,P. McGoldrick,R.H. Rainbird,T. Johnson,W.W. Fischer, and T.W. Lyons.2014. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.Science 346(6209): 635-638.
[44]
Raiswell R.1988. Evidence for surface reaction-controlled growth of carbonate concretions in shales.Sedimentology 35(4): 571-575.
[45]
Raiswell R.,Q.J. Fisher.2000. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition.Journal of the Geological Society 157: 239-251.
[46]
Raiswell R.,Q.J. Fisher.2004. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the formation of concretions.Chemical Geology 211(1-2): 71-85.
[47]
Raiswell R.,S.H. Bottrell,S.P. Dean,J.D. Marshall,A. Carr, and D. Hatfield.2002. Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones.Sedimentology 49(2): 237-254.
[48]
Roberts A.P.,R. Weaver.2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4).Earth and Planetary Science Letters 231(3-4): 263-277.
[49]
Saager P.M.,H.J.W. De Baar, and P.H. Burkill.1989. Manganese and iron in Indian Ocean waters.Geochimica et Cosmochimica Acta 53(9): 2259-2267.
[50]
Sellés-Martínez J.1996. Concretion morphology, classification and genesis.Earth-Science Reviews 41(3-4): 177-210.
[51]
Tang D.J.,X.Y. Shi,G.Q. Jiang,T. Wu,J.B. Ma, and X.Q. Zhou.2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications.Gondwana Research 58: 1-15.
[52]
Tang D.J.,X.Y. Shi,G.Q. Jiang,X.Q. Zhou, and Q. Shi.2017. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China.American Mineralogist 102(11): 2317-2332.
[53]
Tang D.J.,X.Y. Shi,Q. Shi,J.J. Wu,G.Y. Song, and G.Q. Jiang.2015. Organomineralization in Mesoproterozoic giant ooids.Journal of Asian Earth Sciences 107: 195-211.
[54]
Tang D.J.,X.Y. Shi,X.Q. Wang, and G.Q. Jiang.2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters.Precambrian Research 276: 145-157.
[55]
Thamdrup B.,D.E. Canfield.1996. Pathways of carbon oxidation in continental margin sediments off central Chile.Limnology and Oceanography 41(8): 1629-1650.
[56]
Thamdrup B.,H. Fossing, and B.B. Jørgensen.1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark.Geochimica et Cosmochimica Acta 58(23): 5115-5129.
[57]
Tostevin R.,R.A. Wood,G.A. Shields,S.W. Poulton,R. Guilbaud,F. Bowyer,A.M. Penny,T. He,A. Curtis,K.H. Hoffmann, and M.O. Clarkson.2016. Low-oxygen waters limited habitable space for early animals.Nature Communications 7: 12818. DOI: 10.1038/ncomms12818.
[58]
Trefry J.H.,B.J. Presley,W.L. Keeney-Kennicutt, and R.P. Trocine.1984. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin.Geo-Marine Letters 4(2): 125-130.
[59]
Turekian K.K.,K.H. Wedepohl.1961. Distribution of the elements in some major units of the Earth’s crust.GSA Bulletin 72(2): 175-192.
[60]
Wang X.M.,S.C. Zhang,H.J. Wang,C.J. Bjerrum,E.U. Hammarlund,E.R. Haxen,J. Su,Y. Wang, and D.E. Canfield.2017. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting.American Journal of Science 317(8): 861-900.
[61]
Whiticar M.J.1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane.Chemical Geology 161(1-3): 291-314.
[62]
Zhang S.C.,X.M. Wang,E.U. Hammarlund,H.J. Wang,M.M. Costa,C.J. Bjerrum,J.N. Connelly,B.M. Zhang,L.Z. Bian, and D.E. Canfield.2015. Orbital forcing of climate 1.4 billion years ago.Proceedings of the National Academy of Sciences of the United States of America 112(12): E1406-E1413.
[63]
Zhang S.C.,X.M. Wang,H.J. Wang,C.J. Bjerrum,E.U. Hammarlund,M.M. Costa,J.N. Connelly,B.M. Zhang,J. Su, and D.E. Canfield.2016. Sufficient oxygen for animal respiration 1,400 million years ago.Proceedings of the National Academy of Sciences of the United States of America 113(7): 1731-1736.
[64]
Zhang S.C.,X.M. Wang,H.J. Wang,E.U. Hammarlund,J. Su,Y. Wang, and D.E. Canfield.2017a. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels.Biogeosciences 14(8): 2133-2149.
[65]
Zhang S.H.,Y. Zhao,X.H. Li,R.E. Ernst, and Z.Y. Yang.2017b. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton.Earth and Planetary Science Letters 465: 112-125.
[66]
Zhang S.H.,Y. Zhao,Z.Y. Yang,Z.F. He, and H. Wu.2009. The 1.35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent.Earth and Planetary Science Letters 288(3-4): 588-600.
[67]
Zhang S.H.,Z.X. Li,D.A.D. Evans,H.C. Wu,H.Y. Li, and J. Dong.2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353-354: 145-155.