Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions
Guo Hua1, Du Yuansheng1, *, Zhou Lian2, Yang Jianghai1, Huang Hu1
1. State Key Laboratory of Biogeology and Environmentary Geology, China University of Geosciences (Wuhan), Wuhan 430074, China; 2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China*
The concentrations of redox-sensitive trace elements, such as uranium (U), vanadium (V), molybdenum (Mo), cobalt (Co), chromium (Cr) and rare earth elements (REE+Y) were determined in a given carbonate succession in the Gaoyuzhuang Formation (~1.56 Ga), which spans depths from outer shelf to intertidal, to explore the Early Mesoproterozoic ocean redox conditions. The values of the Zr-normalized redox-sensitive trace element concentrations and some relevant ratios show obvious changes from bottom to top in the succession. Samples from the outer shelf setting (M1 interval) demonstrate significantly enhanced values in Zr-normalized redox-sensitive trace element concentrations and relevant ratios (the peaks of Mo/U, V/Cr and Ni/Co ratios larger than 8, 4.25, and 7, respectively). Authigenic framboidal pyrites were also found within oncolite-like carbonate concretions and surrounding host rocks in this interval. These all indicate a euxinic state in the outer shelf environment. Less enrichment of Zr-normalized redox-sensitive elemental abundances and a mild decrease in the values of geochemical ratios were present in the inner shelf environment (M2 interval) (the V/Cr and Ni/Co ratios fall into a range of 2.5-4.25 and 4-5, respectively), suggesting dysoxic conditions dominant in the inner shelf setting. Samples from the shallower subtidal and intertidal settings (M3 and M4 intervals) are mostly invariable with much lower values of Zr-normalized redox-sensitive elements and relevant ratios, with the V/Cr and Ni/Co ratios typically near or less than 2 and 5 respectively, indicative of oxic conditions in the high-energy subtidal/intertidal zones. A remarkable negative Ce anomaly exhibited in the shale-normalized REE+Y diagram in the M4 interval may provide evidence in support of the hypothesis. Taken together, our results suggest a relatively shallow chemocline in the Early Mesoproterozoic ocean: the transitions between euxinic, dysoxic and oxic may occur in quiet-water outer shelf and highenergy subtidal zone, respectively. The presence of euxinic ocean bottom waters is compatible with low concentrations of seawater sulfate and reduced levels of atmospheric oxygen during this period. The extreme environmental conditions induced by these anoxic oceans could have been responsible for the delayed oxygenation of the biosphere and hindered the evolution of multicellular life.
We would like to thank four reviewers for their constructive and helpful comments. This work was financially supported by National Basic Research Program of China (Grant No. 2011 CB808800).
Guo Hua,Du Yuansheng,Zhou Lian et al. Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions[J]. Journal of Palaeogeography, 2013, 2(2): 209-221 .
Guo Hua,Du Yuansheng,Zhou Lian et al. Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions[J]. Journal of Palaeogeography, 2013, 2(2): 209-221 .
Algeo, T. J., Maynard, J. B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3-4): 289-318.
Algeo, T. J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268(3-4): 211-225.
Arnaboldi, M., Meyers, P. A., 2007. Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 425-443.
Arnold, G. L., Anbar, A. D., Barling, J., Lyons, T. W., 2004. Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science, 304(5667): 87-90.
Azmy, K., Sylvester, P., de Oliveira, T. F., 2009. Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of Sao Francisco Basin, Brazil: Evidence from stable isotopes and REEs. Precambrian Research, 168(3-4): 259-270.
Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55.
Breit, G. N., Wanty, R. B., 1991. Vanadium accumulation in carbonaceous rocks-a review of geochemical controls during deposition and diagenesis. Chemical Geology, 91(2): 83-97.
Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., Bowden, S. A., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437(7060): 866-870.
Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396(6710): 450-453.
Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing, 2012. Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322: 80-87.
Crusius, J., Calvert, S., Pedersen, T., Sage, D., 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1-4): 65-78.
Des Marais, D. J., Strauss, H., Summons, R. E., Hayes, J. M., 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359(6396): 605-609.
Fike, D. A., Grotzinger, J. P., Pratt, L. M., Summons, R. E., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747.
Frimmel, H. E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258(3-4): 338-353.
Guo Hua et al.: Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions Ge Lu, Jiang Shaoyong, Swennen, R., Yang Tao, Yang Jinghong, Wu Nengyou, Liu Jian, Chen Daohua, 2010. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Se: Evidence from trace and rare earth element geochemistry. Marine Geology, 277(1-4): 21-30.
Goldblatt, C., Lenton, T. M., Watson, A. J., 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature, 443(7112): 683-686.
Guo Hua, Du Yuansheng, Huang Junhua, Yang Jianghai, Huang Hu, Chen Yu, Zhou Yao, 2010. Habitat types and palaeoenvironments of the Mesoproterozoic Gaoyuzhuang Formation in Pingquan, Hebei Province. Journal of Palaeogeography, 12(3): 269-280 (in Chinese with English abstract).
Holland, H. D., 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B-Biological Sciences, 361(1470): 903-915.
Johnston, D. T., Farquhar, J., Summons, R. E., Shen, Y., Kaufman, A. J., Masterson, A. L., Canfield, D. E., 2008. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica Et Cosmochimica Acta, 72(17): 4278-4290.
Johnston, D. T., Wolfe-Simon, F., Pearson, A., Knoll, A. H., 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 16925-16929.
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indexes Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129.
Kah, L. C., Lyons, T. W., Frank, T. D., 2004. Low marine sulphate and protracted oxygenation of the proterozoic biosphere. Nature, 431(7010): 834-838.
Knoll, A. H., Carroll, S. B., 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284(5423): 2129-2137.
Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie, 2010.
Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).
Lu Songnian, Li Huimin, 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation, Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22: 137-146 (in Chinese with English abstract).
McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200.
McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E., Klinkhammer, G. P., Holm, C., 2006. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochimica Et Cosmochimica Acta, 70(18): 4643-4662.
Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica Et Cosmochimica Acta, 68(2): 263-283.
Poulton, S. W., Fralick, P. W., Canfield, D. E., 2004. The transition to a sulphidic ocean similar to 1.84 billion years ago. Nature, 431(7005): 173-177.
Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124-8129.
Sarkar, A., Chakraborty, P. P., Mishra, B., Bera, M. K., Sanyal, P., Paul, S., 2010. Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: sulphur isotope clues from Indian Proterozoic basins. Geological Magazine, 147(2): 206-218.
Shen, Y., Knoll, A. H., Walter, M. R., 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature, 423(6940): 632-635.
Shen, Y. N., Canfield, D. E., Knoll, A. H., 2002. Middle proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. American Journal of Science, 302(2): 81-109.
Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, Liu Juan, Wang Yi, Liu Dianbei, 2008. Microbial mats in the Mesoproterozoic carbonates of the North China Platform and their potential for hydrocarbon generation. Journal of China University of Geosciences, 19(5): 549-566.
Snow, L. J., Duncan, R. A., Bralower, T. J., 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20: PA3005.
Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32.
Veizer, J., Hoefs, J., 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica Et Cosmochimica Acta, 40(11): 1387-1395.
Wanty, R. B., Goldhaber, M. B., 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems-Accumulation of vanadium in sedimentary-rocks. Geochimica Et Cosmochimica Acta, 56(4): 1471-1483.
Wignall, P. B., Twitchett, R. J., 1996. Oceanic anoxia and the end Permian Mass Extinction. Science, 272(5265): 1155-1158.
Wright, J., Schrader, H., Holser, W. T., 1987. Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil Apatite. Geochimica Et Cosmochimica Acta, 51(3): 631-644.
Zhou Lian, Zhang Haiqiang, Wang Jin, Huang Junhua, Xie Xinong, 2008. Assessment on redox conditions and organic burial of siliciferous sediments at the latest Permian Dalong Formation in Shangci, Sichuan, South China. Journal of China University of Geosciences, 19(5): 496-506.