1Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina; 2GCS Argentina SRL, Molina Campos 150, 8000 Bahía Blanca, Argentina
Abstract A hyperpycnal flow forms when a relatively dense land-derived gravity flow enters into a marine or lacustrine water reservoir. As a consequence of its excess of density, the incoming flow plunges in coastal areas, generating a highly dynamic and often long-lived dense underflow. Depending on the characteristics of the parent flow (flow duration and flow rheology) and basin salinity, the resulting deposits (hyperpycnites) can be very variable. According to flow duration, land-derived gravity flows can be classified into short-lived or long-lived flows. Short-lived gravity flows last for minutes or hours, and are mostly related to small mountainous river discharges, alluvial fans, collapse of natural dams, landslides, volcanic eruptions, jökulhlaups, etc. Long-lived gravity flows last for days, weeks or even months, and are mostly associated with medium- to large-size river discharges. Concerning the rheology of the incoming flow, hyperpycnal flows can be initiated by non-Newtonian (cohesive debris flows), Newtonian supercritical (lahars, hyperconcentrated flows, and concentrated flows) or Newtonian subcritical flows (pebbly, sandy or muddy sediment-laden turbulent flows). Once plunged, non-Newtonian and Newtonian supercritical flows require steep slopes to accelerate, allow the incorporation of ambient water and develop flow transformations in order to evolve into a turbidity current and travel further basinward. Their resulting deposits are difficult to differentiate from those related to intrabasinal turbidites. On the contrary, long-lived Newtonian subcritical flows are capable of transferring huge volumes of sediment, freshwater and organic matter far from the coast even along gentle or flat slopes. In marine settings, the buoyant effect of interstitial freshwater in pebbly and sandy hyperpycnal flows can result in lofting due to flow density reversal. Since the excess of density in muddy hyperpycnal flows is provided by silt-clay sediments in turbulent suspension, lofting is not possible even in marine/saline basins. Muddy hyperpycnal flows can also erode the basin bottom during their travel basinward, allowing the incorporation and transfer of intrabasinal sediments and organic matter. Long-lived hyperpycnal flow deposits exhibit typical characteristics that allow a clear differentiation respect to those related to intrabasinal turbidites. Main features include (1) composite beds with gradual and recurrent changes in sediment grain-size and sedimentary structures, (2) mixture of extrabasinal and intrabasinal components, (3) internal and discontinuous erosional surfaces, and (4) lofting rhythmites in marine/saline basins.
Abouelresh M.O.,R.M. Slatt.2011. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA.Open Geosciences 3: 398-409. doi: 10.2478/s13533-011-0037-z.
[2]
Antobreh A.A.,S. Krastel.2006. Morphology, seismic characteristics and development of cap Timiris canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region.Marine and Petroleum Geology 23(1): 37-59.
[3]
Arnott R.W.C.,B.M. Hand.1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain.Journal of Sedimentary Petrology 59(6): 1062-1069.
[4]
Bagnold R.A.1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.Proceedings of the Royal Society of London A225: 49-63.
[5]
Bagnold R. A.1962. Auto-suspension of transported sediment: turbidity currents.Proceedings of the Royal Society of London A265: 315-319.
[6]
Baker M.,J.H. Baas,J. Malarkey,R. Silva Jacinto,M. Craig,I. Kane, and S. Barker.2017. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits.Journal of Sedimentary Research 87: 1176-1195.
[7]
Banerjee I.1977. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments.Journal of Sedimentary Petrology 47(2): 771-783.
[8]
Batalla R.J.,C. De Jong,P. Ergenzinger and M. Sala.1999. Field observations on hyperconcentrated flows in mountain torrents.Earth Surface Processes and Landforms 24: 247-253.
[9]
Bates C.,1953. Rational theory of delta formation.AAPG Bulletin 37: 2119-2162.
[10]
Baudin F.,E. Stetten, J. Schnyder, K. Charlier, P. Martinez, B. Dennielou, and L. Droz. 2017a. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan — A Rock-Eval survey. Deep Sea Research Part II: Topical Studies in Oceanography 142: 75-90. https://doi.org/10.1016/j.dsr2.2017.01.008.
[11]
Baudin F.,P. Martinez, B. Dennielou, K. Charlier, T. Marsset, L. Droz, and C. Rabouille. 2017b. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan. Deep Sea Research Part II: Topical Studies in Oceanography 142: 64-74. https://doi.org/10.1016/j.dsr2.2017.01.009.
[12]
Beverage J.P.,J.K. Culbertson.1964. Hyperconcentrations of suspended sediments.Journal of the Hydraulics Division, ASCE 90: 117-128.
[13]
Bhattacharya J.P., andJ.A. McEachern 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research 79: 184-209. https://doi.org/10.2110/jsr.2009.026.
[14]
Biscara L.,T. Mulder,P. Martinez,F. Baudin,H. Etcheber,J.M. Jouanneau, and T. Garlan.2011. Transport of terrestrial organic matter in the Ogooué deep sea turbidite system (Gabon).Marine and Petroleum Geology 28(5): 1061-1072.
[15]
Bouma A.H.1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 168 pp.
[16]
Costa J.E.1984. Physical geomorphology of debris flows. In: J.E. Costa, and P.J. Fleisher (Eds.), Developments and Applications of Geomorphology. Springer, Berlin, pp. 268-317.
[17]
Costa J.E.1986. Rheologic, geomorphic and sedimentological differentiation of water floods, hyperconcentrated flows and debris flows. In: V.R. Baker, C. Kochel, and P.C. Patton (Eds.), Flood Geomorphology. Wiley-Interscience, New York, pp. 113-122.
[18]
Coussot P.,M. Meunier.1996. Recognition, classification and mechanical description of debris flows.Earth-Science Reviews 40: 209-227.
Feng Z.Z.2019. Words of the Editor -in-Chief — Some ideas about the comments and discussions of hyperpycnal flows and hyperpycnites.Journal of Palaeogeography 8(3): 301-305.
[21]
Heezen B.C.,C.D. Hollister.1964. Deep sea current evidence from abyssal sediments.Marine Geology 1: 141-174.
[22]
Hollister C.D.1967. Sediment Distribution and Deep Circulation in the Western North Atlantic (Ph.D. dissertation). Columbia University, New York, 467 pp.
[23]
Kuenen P.H.,C.I. Migliorini.1950. Turbidity currents as a cause of graded bedding.The Journal of Geology 58: 91-127.
[24]
Lash G.G.2016. Hyperpycnal transport of carbonaceous sediment — Example from the Upper Devonian Rhinestreet Shale, western New York, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 459: 29-43. https://doi.org/10.1016/j.palaeo.2016.06.035.
[25]
Li J.,J. Yuan,C. Bi, and D. Luo.1983. The main features of the mudflows in Jiang-Jia Ravine.Ztschrift für Geomorphologie 27: 325-341.
[26]
Lowe D.R.1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents.Journal of Sedimentary Petrology 52: 279-297.
[27]
Middleton G.V.1967. Experiments on density and turbidity currents: III. Deposition of sediment.Canadian Journal of Earth Sciences 4: 475-505.
[28]
Middleton, G.V.,M.A. Hampton. 1973. Sediment gravity flows: Mechanics of flow and deposition. In: G.V. Middleton, and A.H. Bouma (Eds.), Turbidites and Deep-Water Sedimentation. SEPM, Anaheim, California Short Course Notes, 38 pp.
[29]
Migliorini C.I.1944. Sul modo di formazione dei complessi tipo macigno.Bollettino della Società Geologica Italiana 62: 48-49.
[30]
Mignard S.L.A.,T. Mulder,P. Martinez,K. Charlier,L. Rossignol, and T. Garlan.2017. Deep-sea terrigenous organic carbon transfer and accumulation: Impact of sea-level variations and sedimentation processes off the Ogooue River (Gabon).Marine and Petroleum Geology 85: 35-53.
[31]
Mohrig D., K.X. Whipple, M. Hondzo, C. Ellis,G. Parker.1998. Hydroplaning of subaqueous debris flows.GSA Bulletin 110: 387-394.
[32]
Mulder, T.,E. Chapron. 2011. Flood deposits in continental and marine environments: Character and significance. In: R.M. Slatt, and C. Zavala (Eds.), Sediment Transfer from Shelf to Deep Water — Revisiting the Delivery System. AAPG Studies in Geology 61: 1-30. doi:10.1306/13271348St613436.
[33]
Mulder T.,J. Alexander.2001. The physical character of subaqueous sedimentary density flows and their deposits.Sedimentology 48: 269-299.
[34]
Mulder T.,J.P.M. Syvitski.1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans.Journal of Geology 103: 285-299.
[35]
Mulder T.,P. Cochonat.1996. Classification of offshore mass movements.Journal of Sedimentary Research 66: 43-57.
[36]
Mulder T.,J.P.M. Syvitski,S. Migeon,J.C. Faugéres, and B. Savoye.2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review.Marine and Petroleum Geology 20: 861-882
[37]
Mutti E.1992. Turbidite Sandstones. AGIP—Istituto di Geologia Università di Parma, 275 pp.
[38]
Mutti E.,G. Davoli,R. Tinterri, and C. Zavala.1996. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins.Memorie di Scienze Geologiche, Universita di Padova 48: 233-291.
[39]
Mutti E.,N. Mavilla,S. Angella, and L.L. Fava.1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective.AAPG Continuing Education Course Note 39: 1-98.
[40]
Mutti E.,R. Tinterri,G. Benevelli,D. Di Biase, and G. Cavanna.2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins.Marine and Petroleum Geology 20: 733-755.
[41]
Nakajima T.2006. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea.Journal of Sedimentary Research 76(1): 59-72.
[42]
Nemec W.2009. What is a hyperconcentrated flow? Conference: IAS Annual Meeting, Alghero (Sardinia), 20-23 September 2009. Abstracts volume.
[43]
Otharán G.,C. Zavala, M. Arcuri, D. Marchal, G. Köhler, M. Di Meglio, and A. Zorzano. 2018. The role of fluid mud flows in the accumulation of organic-rich shales. The Upper Jurassic-Lower Cretaceous Vaca Muerta Formation, Neuquén Basin, Argentina. In: Congreso de Exploración y Desarrollo de Hidrocarburos, 10th, Simposio de Recursos No Convencionales, Extended abstracts, 61-90. Mendoza.
[44]
Otharán G.,C. Zavala, M. Arcuri, M. Di Meglio, A. Zorzano, D. Marchal, and G. Köhler. 2020. Análisis de facies de fangolitas bituminosas asociadas a flujos fluidos de fango. Sección inferior de la Formación Vaca Muerta (Tithoniano), Cuenca Neuquina central, Argentina. Andean Geology, 47 (2). C. Zavala, M. Arcuri, M. Di Meglio, A. Zorzano, D. Marchal, and G. Köhler. 2020. Análisis de facies de fangolitas bituminosas asociadas a flujos fluidos de fango. Sección inferior de la Formación Vaca Muerta (Tithoniano), Cuenca Neuquina central, Argentina. Andean Geology, 47 (2).
[45]
Pettijohn F.J.1975. Sedimentary Rocks, Third Edition. Harper and Row, New York, 628 pp.
[46]
Pierson T. C.2005. Hyperconcentrated flow — Transitional process between water flow and debris flow. In: M. Jakob, and O. Hungr (Eds.), Debris-Flow Hazards and Related Phenomena. Chapter 8: 159-202. Springer Berlin Heidelberg.
[47]
Pierson, T.C.,J.C. Costa. 1987. A rheologic classification of subaerial sediment-water fows. In: J.E. Costa, and G.F. Wieczorek (Eds.), Debris Flows/Avalanches: Process, Recognition and Mitigation. GSA Reviews in Engineering Geology 7: 1-12.
[48]
Pierson T.C.,K.M. Scott.1985. Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow.Water Resources Research 21(10): 1511-1524.
[49]
Prior D.B.,B.D. Bornhold, and M.W. Johns.1984. Depositional characteristics of a submarine debris flow.Journal of Geology 29: 707-727.
[50]
Sanders J.E.1965. Primary sedimentary structures formed by turbidity currents and related sedimentation mechanisms. In: G.V. Middleton (Ed.), Primary Sedimentary Structures and their Hydrodinamic Interpretation. SEPM Special Publications 12: 192-219.
[51]
Sawyer E.W.1986. The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province, Canada.Chemical Geology 55(1-2): 77-95.
[52]
Schieber J.,J.B. Southard, and A. Schimmelmann.2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds: interpreting the rock record in the light of recent flume experiments.Journal of Sedimentary Research 80: 119-128. doi:10.2110/jsr.2010.005.
[53]
Schumm S. A.1977. The Fluvial System. New York, Wiley, 338 pp.
[54]
Smith G.A.,1986. Coarse grained nonmarine volcaniclastic sediment terminology and depositional process.GSA Bulletin 97: 1-10.
[55]
Smith G.A.,D.R. Lowe.1991. Lahars volcano hydrologic events and deposition in the debris flow hyperconcentrated flow continuum.Sedimentation in Volcanic Settings. SEPM Special Publications 45: 59-70.
[56]
Soyinka O.A.,R.M. Slatt.2008. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming. Sedimentology 55 (5): 1117-1133. https://doi.org/10.1111/j.1365-3091.2007.00938.x.
[57]
Sparks R.S.J.,R.T. Bonnecaze,H.E. Huppert,J.R. Lister,M.A. Hallworth,J. Phillips, and H. Mader.1993. Sediment-laden gravity currents with reversing buoyancy.Earth and Planetary Science Letters 114: 243-257.
[58]
Sumner E.J.,L.A. Amy, and P.J. Talling.2008. Deposit structure and processes of sand deposition from decelerating sediment suspensions.Journal of Sedimentary Research 78(8): 529-547.
[59]
Syvitski J.P.M.,S.D. Peckham,R.D. Hilberman, and T. Mulder.2003. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective.Sedimentary Geology 162: 5-24.
[60]
Teichert C.1958. Concept of facies.AAPG Bulletin 42(11): 2718-2744.
[61]
Weirich F.1989. The generation of turbidity currents by subaerial debris flows. California.GSA Bulletin 101: 278-291.
[62]
Wilson R., andJ. Schieber. 2014. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York, USA: Implications for mud transport in epicontinental seas. Journal of Sedimentary Research 84: 866-874. https://doi.org/10.2110/jsr.2014.70.
[63]
Wilson R.D., andJ. Schieber. 2015. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York, USA. Journal of Sedimentary Research 85 (11): 1393-1415. https://doi.org/10.2110/jsr.2015.88.
[64]
Zavala C.2018. Types of hyperpycnal flows and related deposits in lacustrine and marine basins. IAS, 20th International Sedimentological Congress, August 13-17, 2018. Quebec City, Canada. Abstract book.
[65]
Zavala C., andM. Arcuri. 2016. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology 337: 36-54. https://doi.org/10.1016/j.sedgeo.2016.03.008.
[66]
Zavala C.,S.X. Pan.2018. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics.Lithologic Reservoirs 30(1): 1-27.
[67]
Zavala C.,J. Ponce,D. Drittanti,M. Arcuri,H. Freije, and M. Asensio.2006. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina.Journal of Sedimentary Research 76: 41-59.
[68]
Zavala C.,L. Blanco Valiente, and Y. Vallez. 2008. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference “Sediment Transfer from Shelf to Deepwater — Revisiting the Delivery Mechanisms”. March 3-7, 2008—Ushuaia-Patagonia, Argentina (L. Blanco Valiente, and Y. Vallez. 2008. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference “Sediment Transfer from Shelf to Deepwater — Revisiting the Delivery Mechanisms”. March 3-7, 2008—Ushuaia-Patagonia, Argentina (http://www.searchanddiscovery.com/pdfz/documents/2008/jw0807zavala/images/jw0807zavala.pdf.html).
[69]
Zavala C.,M. Arcuri, and L. Blanco Valiente.2012. The importance of plant remains as a diagnostic criteria for the recognition of ancient hyperpycnites.Revue de Paléobiologie 11: 457-469.
[70]
Zavala C.,M. Arcuri,H. Gamero Diaz, and C. Contreras.2007. The composite bed: A new distinctive feature of hyperpycnal deposition (abs.): AAPG Annual Convention and Exhibition, v. 16, p. 157.
[71]
Zavala C.,M. Arcuri, H. Gamero, C. Contreras, and M. Di Meglio, 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: R.M. Slatt, and C. Zavala (Eds.), Sediment Transfer from Shelf to Deep Water — Revisiting the Delivery System. AAPG Studies in Geology, Vol. 61, pp. 31-51.