The use of mineral interfaces, in sand-sized rock fragments, to infer the influence exerted by mechanical durability on the generation of siliciclastic sediments, has been determined for plutoniclastic sand. Conversely, for volcaniclastic sand, it has received much less attention, and, to our knowledge, this is the first attempt to make use of the volcaniclastic interfacial modal mineralogy of epiclastic sandy fragments, to infer mechanical durability control at modern beach environment. Volcaniclastic sand was collected along five beaches developed on five islands, of the southern Tyrrhenian Sea (Alicudi, Filicudi, Salina, Panarea and Stromboli) from the Aeolian Archipelago, and one sample was collected near the Stromboli island volcanic crater. Each sample was sieved and thin sectioned for petrographic analysis. The modal mineralogy of the very coarse, coarse and medium sand fractions was determined by point-counting of the interfacial boundaries discriminating 36 types of interfaces categories, both no-isomineralic and/or no iso-structural (e.g., phenocrystal/glassy groundmass or phenocrystal/microlitic groundmass boundaries) and iso-mineralic interfaces, inside volcanic lithic grains with lathwork and porphyric textures. A total of 47386 interfacial boundaries have been counted and, the most representative series of interfaces, from the highest to the lowest preservation, can be grouped as: a) ultrastable interfaces, categorized as Pl (Plagioclase)/Glgr (Glassy groundmass) >> Px (Pyroxene)/Glgr >> Ol (Olivine)/Glgr >> Op (Opaque)/Glgr >> Hbl (Hornblende)/Glgr>>Bt (Biotite)/Glgr >> Idd (Iddingsite)/Glgr >> Rt (Rutile) / Glgr; b) stable interfaces, categorized as Pl/Migr (Microlitic groundmass) >> Op/Migr >> Px/Migr >> Ol/Migr; c) moderately stable interfaces, categorized as Op/Px >> Op/Hbl >> Px/P >>Ol/Pl>>Bt/Op; and d) unstable interfaces, categorized as Pl/Pl >> Px/Px >> Ol/Ol >> Op/Op >> Hbl/Hbl >> Bt/Bt. Grains, eroded from the volcanic bedrock, if affected solely by abrasion, developed a rounded and smoothed form, with prevailing no-isostructural interfaces such as Plagioclase/Glassy groundmass, Pyroxene/Glassy groundmass and Olivine/Glassy groundmass interfaces. Grains that during transport suffered fracturing and percussion have a sharp and angular form: these combined transport mechanisms produce mainly volcanic sandy grains with iso-structural interfaces, such as Pl/Pl, Px/Px, Hbl/Hbl, and, to a lesser extent, Bt/Op and Bt/Glgr interfaces.
. The use of mineral interfaces in sand-sized volcanic rock fragments to infer mechanical durability[J]. Journal of Palaeogeography, 2020, 9(3): 288-313.
. The use of mineral interfaces in sand-sized volcanic rock fragments to infer mechanical durability[J]. Journal of Palaeogeography, 2020, 9(3): 288-313.
Andò S.,E. Garzanti.2013. Raman spectroscopy in heavy-mineral studies. In Sediment Provenance Studies in Hydrocarbon Exploration and Production, ed. R.A. Scott, H.R. Smyth, A.C. Morton and N. Richardson, 395-412. Geological Society of London: Special Publication 386.
[2]
Andò S.,E. Garzanti,M. Padoan, and M. Limonta.2012. Corrosion of heavy minerals during weathering and diagenesis: a catalogue for optical analysis.Sedimentary Geology 280: 165-178.
[3]
Apollaro C.,F. Perri, E. Le Pera, I. Fuoco, and T. Critelli. 2019. Chemical and minero-petrographical changes on granulite rocks affected by weathering processes.Frontiers Earth Sciences 13: 247-261 (2019)
[4]
Balluffi R.W.,S.M. Allen and Carter W.C.,2005. Structure of Crystalline Interfaces in Kinetics of Materials. John Wiley and Sons, Inc., 591 pp.
[5]
Barberi F.,F. Innocenti,G. Ferrara,J. Keller, and L. Villari.1974. Evolution of Eolian Arc volcanism southern Tyrrhenian Sea.Earth Planetary Science Letters, 21: 269-276.
[6]
Barros dos J.C., E. Le Pera, V.S. Souza Júnior, C. Souza de Oliveira, J. Juilleret, M. Metri Corrêa and A.C. de Azevedo.2018. Porosity and genesis of clay in gneiss saprolites: The relevance of saprolithology to whole regolith pedology.Geoderma 319: 1-13.
[7]
Barros dos Santos, J.C., E. Le Pera, V.S. Souza Júnior, M.M. Corrêa,A.C. Azevedo.2017. Gneiss saprolite weathering and soil genesis along an east-west regolith sequence (NE Brazil).Catena 150: 279-290.
[8]
Basu A.,E. Molinaroli.1989. Provenance characteristics of detrital opaque Fe-Ti oxides minerals.Journal of Sedimentary Petrology 59: 922-934.
[9]
Basu A.,E. Molinaroli.1991. Reliability and application of detrital Fe-Ti oxide minerals in provenance determination.Geological Society, London, Special Publication 57: 55-65.
[10]
Cameron K.L., andBlatt H., 1971. Durabilities of sand-size schist and volcanic rock fragments during fluvial transport, Elk Creek, Black Hills, South Dakota. Journal of Sedimentary Petrology 41: 565-576.
[11]
Caracciolo L.,R. Tolosana-Delgado, E. Le Pera,H. von Eynatten,J. Arribas, and S. Tarquini.2012. Influence of granitoid textural parameters on sediment composition: implications for sediment generation.Sedimentary Geology 280: 93-107.
[12]
Cather S.M.,R.L. Folk.1991. Pre-diagenetic sedimentary fractionation of andesitic detritus in a semiarid climate: an example from the Eocene Datil Group, New Mexico. In Sedimentation in Volcanic Settings, ed. R.V. Fisher and G.A Smith. Society of Economic Paleontologists and Mineralogists Special Paper 45: 211-226.
[13]
Chiarabba C.,P. De Gori, and F. Speranza.2008. The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution.Earth Planetary Science Letters 268: 408-423.
[14]
Critelli S.,R.V. Ingersoll.1995. Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (southern California).Sedimentology 42: 783-804.
[15]
Critelli S.,E. Le Pera, and R.V. Ingersoll.1997. The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand.Sedimentology 44: 653-671.
[16]
Critelli S.,K.M. Marsaglia, and C.J. Busby.2002. Tectonic history of a Jurassic backarc-basin sequence (the Gran Cañon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits.Geological Society of America Bulletin 114(5): 515-27.
[17]
Critelli S.,M. Sorriso-Valvo, and G. Ventura.1993. Relazioni tra attività vulcanica, sedimentazione epiclastica ed evoluzione geomorfologica nell’isola di Salina (Isole Eolie).Bollettino Società Geologica Italiana 112: 447-70.
[18]
Davies D.K.,R.K. Vessell,R.C. Miles,M.G. Foley, and S.B. Bonis.1978. Fluvial transport and downstream sediment modifications in an active volcanic region. In Fluvial Sedimentology, ed. A.D. Miall, Canadian Society of Petroleum Geologists Memoir 5: 61-84.
[19]
De Rosa, R., H. Guillou, R. Mazzuoli,G. Ventura.2003. New unspiked K-Ar ages of volcanic rocks of the central and western sector of the Aeolian Is-land: reconstruction of the volcanic stages.Journal of Volcanology and Geothermal Research 120: 161-178.
[20]
Dickinson W.R.1985. Provenance relations from detrital modes of sandstones. In Provenance of Arenites, ed. G.G. Zuffa, NATO Advanced Science Institutes, C-148: 333-362.
[21]
Dutta P.K., Z. Zhou,P.R. dos Santos.1993. A theoretical study of mineralogical maturation of eolian sand. In Processes Controlling the Composition of Clastic Sediments, ed. M.J. Johnsson and A. Basu, Geological Society of America, Special Paper 284: 203-234
[22]
Eggleton R.A.,1986. The relation between crystal structure and silicate weathering rates. In Rates of chemical weathering of rocks and minerals, ed. S.M. Coleman, and D.P. Dethier, Orlando, Florida: Academic Press, 21-40.
[23]
Faccenna C.,T.W. Becker,F.P. Lucente,L. Jolivet, and F. Rossetti.2001. History of subduction and back-arc extension in the central Mediterranean.Geophysics Journal International 145: 809-820.
[24]
Fisk M.,N. McLoughlin.2013 Atlas of alteration textures in volcanic glass from the ocean basins.Geosphere 9(2): 317-341.
[25]
Francalanci L., Lucchi F., Keller J., De Astis G., andTranne C.A.2013. Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). In The Aeolian Islands Volcanoes, ed. Lucchi, F., A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society, London: Memoirs 37: 397-471.
[26]
Furnes H., N. McLoughlin, K. Muehlenbachs, N. Banerjee, H. Staudigel, Y. Dilek, M. deWit, M. Van Kranendonk,P. Schiffman.2008. Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time - a review. In Links Between Geological Processes, Microbial Activities and Evolution of Life,: ed. Y. Dilek et al., Springer Science + Business Media B.V., 1-68.
[27]
Garrels R.M.,F.T. MacKenzie.1971. Evolution of sedimentary rocks. Norton, New York: 397 pp.
[28]
Garzanti E.1986. Source rock versus sedimentary control on the mineralogy of deltaic volcanic arenites (Upper Triassic, northern Italy).Journal of Sedimentary Petrology 56, 267-75.
[29]
Garzanti E.,S. Andò.2007a. Heavy mineral concentration in modern sands: implication for provenance interpretation.Developments in Sedimentology 58: 517-545.
[30]
Garzanti E.,S. Andò.2007b. Plate tectonics and heavy minerals suites of modern sands.Developments in Sedimentology 58: 741-763.
[31]
Garzanti E.,S. Canclini,F. Moretti Foggia, and N. Petrella.2002. Unravelling magmatic and orogenic provenances in modern sands: the back-arc side of the Apennine thrust-belt (Italy).Journal of Sedimentary Research 72: 2-17.
[32]
Goldich S.S.1938. A Study in Rock Weathering.Journal of Geology 46: 17-58.
[33]
Grandstaff D.E.1986. The dissolution rate of forsteritic olivine from Hawaiian beach sand. In Rates of chemical weathering of rocks and minerals, ed. Colman S.M and D.P Dethier, New York: Academic Press, 41-59.
[34]
Gvirtzman Z.,A. Nur.2001. Residual topography, lithospheric structure and sunken slabs in the central Mediterranean.Earth and Planetary Science Letters 187: 117-30.
[35]
Haraldsson H.1984. Relations between petrography and the aggregate properties of Icelandic rocks.Bulletin of the International Association of Engineering Geologist 30: 74-76.
[36]
Hart J.K.2006. An investigation of subglacial processes at the microscale from Briksdalsbreen, Norway.Sedimentology 53: 125-146.
[37]
Heins W.A.1993. Source rock texture versus climate and topography as controls on the composition of modern, plutoniclastic sand.Geological Society of America Special Paper 284: 135-146.
[38]
Heins W.A.1995. The use of mineral interfaces in sand-sized rock fragments to infer ancient climate.Geological Society of America Bulletin 107: 113-25.
[39]
Heins,W.A.,S. Kairo.2007. Predicting sand characterwith integrated genetic analysis. In Processes Controlling the Composition of Clastic Sediments, ed. M.J. Johnsson and A. Basu, 345-379, Geological Society of America, Special Paper 284.
[40]
Hornig-Kjarsgaard I.,J. Keller,U. Koberski,E. Stadlbauer,L. Francalanci, and R. Lenhart.1993. Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy.Acta Vulcanologica 3: 21-68.
[41]
Ingersoll R.V.,1990. Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks.Geology 18: 733-736.
[42]
Ingersoll R.V.,A.G. Kretchmer and P.K. Valles.1993. The effect of sampling scale on actualistic sandstone petrofacies.Sedimentology 40: 937-53.
[43]
Ingersoll R.V.,A.G. Kretchmer and P.K. Valles.1993. The effect of sampling scale on actualistic sandstone petrofacies.Sedimentology 40: 937-53.
[44]
Ingersoll R.V.,T.F. Bullard,R.L. Ford,J.P. Grimm,J.D. Pickle, and S.W. Sares, 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method.Journal of Sedimentary Petrology 54, 103-16.
[45]
ISPRA, 2011. Istituto Superiore per la Protezione e la Ricerca Ambientale. 2011. Gli indicatori del clima in Italia nel 2010, VI, 152 pp.
[46]
Johnsson M. J.,S.D. Ellen, and M.A. McKittrick.1993. Intensity and duration of chemical weathering: an example from soil clays of the southern Koolau Mountains, Oahu, Hawaii. InProcesses Controlling the Composition of Clastic Sediments, ed. M.J Johnsson and A. Basu, Geological Society of America Special Paper 284: 147-170.
[47]
Keller J.,1982. Mediterranean island arcs. In Andesites, ed. R.S. Thorpe, Wiley, Chichester, 307-325.
[48]
Keller J.,I. Hornig-Kjarsgaard U. Koberski,E. Stadlbauer, and R. Lenhart.1993. Geological map of the island of Stromboli. In The island of Stromboli: Volcanic history and magmatic evolution, ed. Manetti P. and J. Keller, Acta Vulcanologica, 3, Appendix.
[49]
King R.H.,1986. Weathering of Holocene airfall tephras in the southern Canadian Rockies. In Rates of chemical weathering of rocks and minerals, ed. Colman S.M and D.P Dethier, New York, Academic Press, 239-262.
[50]
Le Pera, E.,S. Critelli.1997. Sourceland controls on the composition of beach and fluvial sand of the Tyrrhenian coast of Calabria, Italy: implications for actualistic petrofacies.Sedimentary Geology 110: 81-97.
[51]
Le Pera, E.,M. Sorriso-Valvo.2000. Weathering and morphogenesis in a Mediterranean climate, Calabria, Italy.Geomorphology 34: 251-270.
[52]
Le Pera, E.,C. Morrone.2018. Heavy minerals distribution and provenance in modern beach sands of Campania, Italy.Rendiconti Online Società Geologica Italiana 45: 136-140. DOI: https://doi.org/10.3301/ROL.2018.41.
[53]
Locke W.W. 1986. Rates of hornblende etching in soils on glacial deposits, Baffin Island, Canada. In Rates of chemical weathering of rocks and minerals, ed. S.M. Colman and D.P. Dethier, New York, Academic Press, 129-145.
[54]
Lowe D.J.,1986. Controls on the rates of weathering and clay minerals genesis in airfall tephras: a review and New Zealand case study. In Rates of chemical weathering of rocks and minerals, ed. S.M. Colman and D.P. Dethier, New York: Academic Press, 265-330.
[55]
Lucchi F.,2009. Late-Quaternary terraced marine deposits as tools for wide-scale correlation of unconformity-bounded units in the volcanic Aeolian archipelago (southern Italy).Sedimentary Geology 216: 158-178.
[56]
Lucchi F.2013, Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian archipelago (southern Italy). In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 37-53.
[57]
Lucchi F.,A. Peccerillo,C.A. Tranne,P.L. Rossi,M.L. Frezzotti, and C. Donati, 2013a. Volcanism, calderas and magmas of Alicudi composite volcano (western Aeolian archipelago). In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 83-111.
[58]
Lucchi F., Santo A.P., Tranne C.A., Peccerillo A., andKeller J.2013b. Volcanism, magmatism, volcano-tectonics and sea-level fluctuations in the geological history of Filicudi (western Aeolian archipelago). In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 113-154.
[59]
Lucchi F.,R. Gertisser,J. Keller,F. Forni,G. De Astis, and C.A. Tranne.2013c. Eruptive history and magmatic evolution of the island of Salina (central Aeolian archipelago). In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 155-211.
[60]
Lucchi F., Tranne C.A., Peccerillo A., Keller J., andRossi P.L.2013d. Geological history of the Panarea volcanic group (eastern Aeolian archipelago). In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 349-394.
[61]
Mack G.H., 1978. The survivability of labile light mineral grains in fluvial, eolian, and littoral environments: the Permian Cutler-Cedar Mesa Formations, Moab, Utah.Sedimentology 25(5): 587-604.
[62]
Mack G.H.,T. Jerzykiewicz.1989. Detrital modes of sand and sandstone derived from andesitic rocks as paleoclimatic indicator.Sedimentary Geology 65: 35-44.
[63]
Marsaglia K.M.1992. Petrography and provenance of volcaniclastic sands recovered from the Izu-Bonin Arc, Leg 126.Proceedings of the Ocean Drilling Program, Scientific Results 126: 139-54.
[64]
Marsaglia K.M.1993. Basaltic island sand provenance. In Processes Controlling the Composition of Clastic Sediments, ed. M.J. Johnsson and A. Basu, Geological Society of America, Special Paper 284: 41-65.
[65]
Marsaglia, K.M. and K. Tazaki.1992. Diagenetic trend in ODP Leg 126 sandstones. In Proceedings of the Ocean Drilling Program, Scientific Results 126, ed. B. Taylor, K. Fujioka, T.R. Janecec and C. Langmuir, College Station, TX, pp. 125-138 Ocean Drilling Program.
[66]
McCarroll D.1990. Differential weathering of feldspar and pyroxene in an arctic alpine environment.Earth Surface Processes and Landforms 15(7): 641-651.
[67]
Molinaroli, E. and A. Basu.1993. Toward quantitative provenance analysis: A brief review and case study. In Processes Controlling the Composition of Clastic Sediments, ed. M.J. Johnsson and A. Basu, Geological Society of America, Special Paper 284: 323-333.
[68]
Morrone C.,R. De Rosa,E. Le Pera, and K.M. Marsaglia.2017. Provenance of volcaniclastic beach sand in a magmatic-arc setting: an example from Lipari island (Aeolian archipelago, Tyrrhenian Sea).Geological Magazine 154(4): 804-828.
[69]
Morrone C.,E. Le Pera,R. De Rosa, and K.M. Marsaglia.2018. Beach sands of Lipari island, Aeolian archipelago: roundness study.Rendiconti Online Società Geologica Italiana 45: 141-146. DOI: https://doi.org/10.3301/ROL.2018.42
[70]
Morrone C.,E. Le Pera,K.M. Marsaglia, and R. De Rosa.2020. Compositional and textural study of modern beach sands in the active volcanic area of the Campania region (southern Italy). Sedimentary Geology 396: DOI: https://doi.org/10.1016/j.sedgeo.2019.105567
[71]
Palomares M.,J. Arribas.1993. Modern stream sands from compound crystalline sources: composition and sand generation index. In Processes Controlling the Composition of Clastic Sediments, ed. M.J. Johnsson and A. Basu, Geological Society of America, Special Paper 284: 313-322.
[72]
Patacca E.,P. Scandone.1989. Post-Tortonian mountain building in the Apennines: the role of the passive sinking of a relic lithospheric slab. In The Lithosphere in Italy: Advances in Earth Science Research, ed. A.M. Boriani, M. Bonafede, G.B. Piccardo, and G.B. Vai, Accademia Nazionale dei Lincei, Rome: 157-176.
[73]
Peccerillo A.,G. De Astis,D. Faraone,F. Forni, and M.L. Frezzotti.2013. Compositional variations of magmas in the Aeolian arc: implications for petrogenesis and geodynamics. In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 491-510.
[74]
Pettijohn F.P.,P.E. Potter and R. Siever.1987. Sand and Sandstones, 2nd Edition: New York, Springer-Verlag, 583 p.
[75]
Pittman E. D.1969. Destruction of plagioclase twins by stream transport.Journal of Sedimentary Petrology 39: 1432-7.
[76]
Riber L.,H. Dypvik, and R. Sørlie.2015. Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea.Norvegian Journal of Geology: 95(1): 57-89.
[77]
Riber L.,H. Dypvik,R. Sørlie, and R.E. Ferrell.2016. Clay minerals in deeply buried paleoregolith profiles, Norwegian North Sea.Clays and Clay Minerals 64(5): 488-508.
[78]
Riber L.,H. Dypvik,R. Sørlie,S.A.A.M. Naqvi,K. Stangvik,N. Oberhardt, and P.A. Schroeder.2017. Comparison of deeply buried paleoregolith profiles, Norwegian North Sea, with outcrops from southern Sweden and Georgia, USA—Implications for petroleum exploration.Palaeogeography, Palaeoclimatology, Palaeoecology: 471: 82-95.
[79]
Sætre C., H. Hellevang, C. Dennehy, H. Dypvik,S. Clark.2018. A diagenetic study of intrabasaltic siliciclastics sandstones from the Rosebank field.Journal of Marine and Petroleum Geology 98: 335-355.
[80]
Sætre C., H. Hellevang, L. Riud, H. Dypvik, C. Pilorget, F. Poulet,S.C. Werner.2019. Experimental hydrothermal alteration of basaltic glass with relevance to Mars.Meteoritics and Planetary Science 54: 357-378.
[81]
Scarciglia F., N. Saporito, M.F. La Russa, E. Le Pera, M. Macchione, Puntillo D., G.M. Crisci, and A. Pezzino.2012. Role of lichens in weathering of granodiorite in the Sila uplands (Calabria, southern Italy).Sedimentary Geology 280: 119-134.
[82]
Slatt R. M.,N. Eyles.1981. Petrology of glacial sand: implications for the origin and mechanical durability of lithic fragments.Sedimentology 28(2): 171-183.
[83]
Smith, G. A. and J.E Lotosky.1995. What factors control the composition of andesitic sand?Journal of Sedimentary Research: A65(1): 91-8.
[84]
Tranne C.A.,F. Lucchi,N. Calanchi,G. Lanzafame, and P.L. Rossi.2002a. Geological map of the Island of Lipari (Aeolian Islands)(scale 1:12.500), University of Bologna and INGV, LAC, Firenze.
[85]
Tranne C.A.,F. Lucchi,N. Calanchi,G. Lanzafame, and P.L. Rossi.2002b. Geological map of the Island of Filicudi (Aeolian Islands)(scale 1:10.000), University of Bologna and INGV, LAC, Firenze.
[86]
Velbel M.A.1999. Bond strength and the relative weathering rates of simple orthosilicates.American Journal of Science 299: 679-696.
[87]
Velbel M.A.2014. Etch-pit size, dissolution rate, and time in the experimental dissolution of olivine: Implications for estimating olivine lifetime at the surface of Mars.American Mineralogist, 99: 2227-2233.
[88]
Velbel M.A.,W.W. Barker.2008. Pyroxene weathering to smectite: conventional and cryo-field emission scanning electron microscopy, Koua Bocca Ultramafic Complex, Ivory Coast. Clays and Clay Minerals, 56, 1, 112-127.
[89]
Velbel M.A.1989. Weathering of hornblende to ferruginous products by a dissolution reprecipitation mechanism: petrography and stoichiometry.Clays and Clay Minerals 37(6): 515-524.
[90]
Velbel M.A.,2009. Dissolution of olivine during natural weathering.Geochimica et Cosmochimica Acta, 73: 6098-6113.
[91]
Ventura G.,2013. Kinematics of the Aeolian volcanism (Southern Tyrrhenian Sea) from geophysical and geological data. In The Aeolian Islands Volcanoes, ed. F. Lucchi, A. Peccerillo, J. Keller, C.A. Tranne, and P.L. Rossi, Geological Society of London Memoirs 37: 3-11.
[92]
Ventura G.,G. Vilardo,G. Milano, and N.A. Pino.1999. Relationships among crustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano volcanic complex Aeolian Islands, Southern Tyrrhenian Sea, Italy.Physics of the Earth and Planetary Interior: 116: 31-52.
[93]
Villari L.,1980. The Island of Alicudi.Rendiconti Società Italiana Mineralogia e Petrologia 36: 441-466.
[94]
Weltje G.J.2012. Quantitative models of sediment generation and provenance: state of the art and future developments.Sedimentary Geology 280: 4-20.
[95]
Weltje G.J.,B. Paredis,L. Caracciolo, and W.A. Heins2018. Quantitative analysis of crystal-interface frequencies in granitoids: Implications for modelling of parent-rock texture and its influence on the properties of plutoniclastic sands.Sedimentary Geology 375: 72-85.
[96]
White A.F.,L.V. Benson, and A. Yee. 1986. Chemical weathering of the May 18, 1980, Mount St. Helens ash fall and the effect on the Iron Creek watershed, Washington. In Rates of chemical weathering of rocks and minerals, ed. Colman S.M and D.P Dethier, New York, Academic Press, 351-374.
[97]
Williams H.1950. Volcanoes of the Paricutin region, Mexico. United States Geological Survey Bulletin: 965-B: 165-279.