Abstract Bioturbation plays a critical role in sediment mixing and biogeochemical cycling between sediment and seawater. An abundance of bioturbation structures, dominated by Thalassinoides, occurs in carbonate rocks of the Cambrian Series 2 Zhushadong Formation in the Dengfeng area of western Henan Province, North China. Determination of elemental geochemistry can help to establish the influence of burrowing activities on sediment biogeochemical cycling, especially on changes in oxygen concentration and nutrient regeneration. Results show that there is a dramatic difference in the bioturbation intensity between the bioturbated limestone and laminated dolostone of the Zhushadong Formation in terms of productivity proxies (Baex, Cu, Ni, Sr/Ca) and redox proxies (V/Cr, V/Sc, Ni/Co). These changes may be related to the presence of Thalassinoides bioturbators, which alter the particle size and permeability of sediments, while also increase the oxygen concentration and capacity for nutrient regeneration. Comparison with modern studies shows that the sediment mixing and reworking induced by Thalassinoides bioturbators significantly changed the primary physical and chemical characteristics of the Cambrian sediment, triggering the substrate revolution and promoting biogeochemical cycling between sediment and seawater.
. Bioturbation of Thalassinoides from the Lower Cambrian Zhushadong Formation of Dengfeng area, Henan Province, North China[J]. , 2021, 10(1): 39-54.
. Bioturbation of Thalassinoides from the Lower Cambrian Zhushadong Formation of Dengfeng area, Henan Province, North China[J]. Journal of Palaeogeography, 2021, 10(1): 39-54.
[1] Algeo T.J.,J.B. Maynard.2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems.Chemical Geology 206: 289-318. [2] Aller R.C.1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation.Chemical Geology 114: 331-345. [3] Armstrong-Altrin J.S.,M.L. Machain-Castillo, L. Rosales-Hoz, A. Carranza-Edwards, J.A. Sanchez-Cabeza, and A.C. Ruíz-Fernandez.2015. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis.Continental Shelf Research 95: 15-26. [4] Awramik S.M.,J. Sprinkle.1999. Proterozoic stromatolites: The first marine evolutionary biota.Historical Biology 13(4): 241-253. [5] Beikirch D.W.,R.M. Feldmann.1980. Decapods crustaceans from the Pflugerville Member, Austin Formation (Late Cretaceous: Campanian) of Texas.Journal of Paleontology 54: 309-324. [6] Berner R.A.2009. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model.American Journal of Science 309(7): 603-606. [7] Boyle R.A.,T.W. Dahl,A.W. Dale,G.A. Shield-Zhou M. Zhu,M.D. Brasier,D.E. Canfield, and T.M. Lenton.2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation.Nature Geoscience 7(9):671-676. [8] Boyle R.A.,T.W. Dahl,C.J. Bjerrum, and D.E. Canfield.2018. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian transition.Geobiology 16(3): 252-278. [9] Brlek M.,T. Korbar,A. Košir,B. Glumac,A. Grizelj, and B. Otoničar.2014. Discontinuity surfaces in Upper Cretaceous to Paleogene carbonates of central Dalmatia (Croatia): Glossifungites ichnofacies, biogenic calcretes, and stratigraphic implications.Facies 60(2): 467-487. [10] Bromley R.G.1996. Trace Fossils: Biology and Taphonomy. Chapman & Hall, London: 280 pp. [11] Buatois L.A.,G.M. Narbonne,M.G. Mángano,N.B. Carmona, and P. Myrow.2014. Ediacaran matground ecology persisted into the earliest Cambrian.Nature Communications 5: 35-44. [12] Canfield D.E.,J. Farquhar.2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans.Proceedings of the National Academy of Sciences of the United States of America 106(20):8123-8127. [13] Carvalho C.N.D.,P.A. Viegas, and MárioCachão.2007. Thalassinoides and its producer: Populations of Mecochirus buried within their burrow systems, Boca do Chapim Formation (Lower Cretaceous), Portugal. Palaios 22(1): 104-109. [14] Chen Z.,C.M. Zhou,M. Meyer,X. Xiang,J.D. Schiffbauer,X.L. Yuan, and S.H. Xiao.2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224: 690-701. [15] Cherns L.,J.R. Wheelye, and L. Karis.2006. Tunneling trilobites: Habitual infaunalism in an Ordovician carbonate seafloor.Geology 34: 657-660. [16] Ciutat A.,M. Gerino, and A. Boudou.2007. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids.Ecotoxicology and Environmental Safety 68(1): 108-117. [17] D'Andrea, A.F.,T.H. DeWitt.2009. Geochemical ecosystem engineering by the mud shrimp Upogebiapugettensis(Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling. Limnology and Oceanography 54(6):1911-1932. [18] Darwin C.1881. The Formation of Vegetable Mould through the Action of Worms, with Observations on their Habits. John Murray, London: 326 pp. [19] Ding Y.,J.N. Liu,F.F. Chen, and X.D. Wang.2020. Ichnology, palaeoenvironment, and ecosystem dynamics of the Early Cambrian (Stage 4, Series 2) Guanshan Biota, South China.Geological Journal 55(1): 77-94. [20] Dornbos S.Q.,D.J. Bottjer, and J.Y. Chen.2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: Evidence for the Cambrian substrate revolution.Palaeogeography, Palaeoclimatology, Palaeoecology 220(1-2): 47-67. [21] Dymond J.,E. Suess, and M. Lyle.1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity.Paleoceanography 7(2): 163-181. [22] Ekdale A.A.,R.G. Bromley.2003. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden.Palaeogeography, Palaeoclimatology Palaeoecology 192: 221-227. [23] El-Sabbagh A.,M. El-Hedeny, and S.A. Farraj.2017. Thalassinoides in the Middle Miocene succession at Siwa Oasis, northwestern Egypt. Proceedings of the Geologists’ Association 128(2): 222-233. [24] Fan Y.C.,Y.A. Qi,M.Y. Dai,G.S. Qing,B.C. Liu, and W.B. Bai.2020. Paleoclimate evolution recorded in the Cambrian Epoch 2 Zhushadong Formation from Dengfeng area, western Henan Province.Journal of Palaeogeography (Chinese Edition) 22(2): 367-376. [25] Fang X.Y.,L.L. Wu,A.S. Geng, and Q. Deng.2019. Formation and evolution of the Ediacaran to Lower Cambrian black shales in the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 527: 87-102. [26] Glaessner M.F.1957. Palaeozoic arthropod trail from Australia.Paläontologische Zeitschrift 3: 103-109. [27] Herringshaw L.G.,R.H.T. Callow, and D. Mcilroy.2017. Engineering the Cambrian explosion: The earliest bioturbators as ecosystem engineers.Geological Society of London, Special Publications 448: 369-382. [28] Jaccard S.L.,C.T. Hayes,A. Martínez-García D.A. Hodell,R.F. Anderson,D.M. Sigman, and G.H. Haug.2013. Two modes of change in southern ocean productivity over the past million years.Science 339(6126): 1419-1423. [29] Janas U.,D. Burska,H. Kendzierska,D. Pryputniewicz-Flis, and K. Lukawska-Matuszewska.2019. Importance of benthic macrofauna and coastal biotopes for ecosystem functioning — Oxygen and nutrient fluxes in the coastal zone.Estuarine Coastal and Shelf Science 225: 106-238. [30] Jones B.,D.A.C. Manning.1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chemical Geology 111: 111-129. [31] Kamber B.S.,S. Moorbath, and M.J. Whitehouse.2001. The oldest rocks on Earth: Time constraints and geological controversies. Geological Society of London, Special Publications 190: 177-203. [32] Kimura H.,Y. Watanabe.2001. Oceanic anoxia at the Precambrian-Cambrian boundary.Geology 29(11): 995-998. [33] Kinoshita K.,M. Wada,K. Kogure, and T. Furota.2008. Microbial activity and accumulation of organic matter in the burrow of the mud shrimp,Upogebia major,(Crustacea: Thalassinidea). Marine Biology 153(3): 277-283. [34] Krumbein W.E.,1983. Stromatolites — The challenge of a term in space and time.Precambrian Research 20(2-4): 493-531. [35] Landrum P.F.,M. Leppänen S.D. Robinson,D.C. Gossiaux, and M.B. Lansing.2004. Effect of 3,4,3',4'-tetrachlorobiphenyl on the reworking behavior ofLumbriculus variegatus exposed to contaminated sediment. Environmental Toxicology and Chemistry 23(1): 178-186. [36] Liu Y.J.,L.M. Cao, Z.L. Li, H.N. Wang, and T.Q. Chu. 1984. Elemental Geochemistry. Science Press, Beijing: pp. 360-372 (in Chinese with English Abstract). [37] Lohrer A.M.,S.F. Thrush, and M.M. Gibbs.2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions.Nature 431(7012): 1092-1095. [38] Mángano M.G.,L.A. Buatois.2004. Reconstructing early Phanerozoic intertidal ecosystems: Ichnology of the Cambrian Campanario Formation in northwest Argentina.Fossils and Strata 51(51): 17-38. [39] Mángano M.G.,L.A. Buatois.2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks.Proceedings of the Royal Society B: Biological Sciences 281(1780): 20140038. DOI: 10.1098/rspb.2014.0038. [40] McLennan S.M.2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2(4): DOI: 10.1029/2000GC000109. [41] Meysman F.J.,J.J. Middelburg, and C.H. Heip.2006. Bioturbation: A fresh look at Darwin’s last idea.Trends in Ecology & Evolution 21(12): 688-695. [42] Michaud E.,G. Desrosiers,F. Mermillod-Blondin B. Sundby, and G. Stora.2005. The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326(1): 77-88. [43] Michaud E.,G. Desrosiers,F. Mermillod-Blondin B. Sundby, and G. Stora.2006. The functional group approach to bioturbation: ii. The effects of theMacoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. Journal of Experimental Marine Biology and Ecology 337(2-3): 178-189. [44] Murry R.W.,M.R. Buchholtz,D.C. Gerlach, and G. Price Russ Ⅲ.1991. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, Californian: Assessing REE sources to fine-grained marine sediments.Geochimica et Cosmochimica Acta 55(7): 1875-1895. [45] Myrow P.M.1995. Thalassinoides and the enigma of Early Paleozoic open framework burrow systems. Palaios 10(1): 58-74. [46] Ndjigui P.D.,V.L. Onana,E. Sababa, and E.C. Bayiga.2018. Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment.Journal of African Earth Sciences 143: 102-117. [47] Nicholaus R.,B. Lukwambe,L. Zhao,W. Yang,J.Y. Zhu, and Z.M. Zheng.2019. Bioturbation of blood clamTegillarca granosa on benthic nutrient fluxes and microbial community in an aquaculture wastewater treatment system. International Biodeterioration & Biodegradation 142: 73-82. [48] Nickell L.A.,R.J.A. Atkinson.1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology.Marine Ecology Progress Series 128(1): 181-197. [49] Pei F.,H.Q. Zhang, G.S. Yan, and Y.B. Xi. 2008. Research on Stratigraphic Paleontology in Henan Province, Volume 3, Early Paleozoic (North China). Yellow River Water Conservancy Press, Zhengzhou (in Chinese with English Abstract). [50] Pillay D.,G.M. Branch.2011. Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems.Oceanography and Marine Biology 49: 137-192. [51] Pillay D.,G.M. Branch,J. Dawson, and D. Henry.2011. Contrasting effects of ecosystem engineering by the cordgrassSpartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon. Estuarine Coastal and Shelf Science 91(2): 169-176. [52] Piper D.Z.,S.E. Calvert.2009. A marine biogeochemical perspective on black shale deposition.Earth-Science Reviews 95(1): 63-96. [53] Qi Y.A.1999. The description and analysis of bioturbation and ichnofabric.Henan Geology 17(4): 273-277 (in Chinese with English Abstract). [54] Qi Y.A.,Y. Meng,M.Y. Dai, and D. Li.2014. Biogenic leopard patch structures from the Zhushadong Formation (Cambrian Series 2), Dengfeng area, Western Henan.Geological Science and Technology Information 33(5):1-8 (in Chinese with English Abstract). [55] Repetto M.,B.D. Griffen.2012. Physiological consequences of parasite infection in the burrowing mud shrimp,Upogebia pugettensis, a widespread ecosystem engineer. Marine and Freshwater Research 63(1): 60-67. [56] Riding R.,L. Liang,J.H. Lee, and A. Virgone.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr.Palaeogeography, Palaeoclimatology, Palaeoecology 514: 135-143. [57] Schoepfer S.D.,J. Shen,H.Y. Wei,R.V. Tyson,E. Ingall, and T.J. Algeo.2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity.Earth-Science Reviews 149: 23-52. [58] Seilacher A.1999. Biomat-ralated lifestyles in the Precambrian.Palaios 14(1): 86-93. [59] Shen H.,G. Jiang,X.H. Wan,H. Li,Y. Qiao,S. Thrush, and P.H. He.2017. Response of the microbial community to bioturbation by benthic macrofauna on intertidal flats.Journal of Experimental Marine Biology and Ecology 488: 44-51. [60] Stamhuis E.J.,C.E. Schreurs, and J.J. Videler.1997. Burrow architecture and turbative activity of the thalassinid shrimpCallianassa subterranea from the central North Sea. Marine Ecology Progress Series 151(1-3): 155-163. [61] Stoll H.M.,D.P. Schrag.2001. Sr/Ca variations in Cretaceous carbonates: Relation to productivity and sea level changes.Palaeogeography, Palaeoclimatology, Palaeoecology 168(3-4): 311-336. [62] Tarhan L.G.2018. The early Paleozoic development of bioturbation — Evolutionary and geobiological consequences.Earth-Science Reviews 178: 177-207. [63] Taylor A.M.,R. Goldring.1993. Description and analysis of bioturbation and ichnofabric.Journal of Geological Society 150(1): 141-148. [64] Tribovillard N.,T.J. Algeo,T. Lyons, and A. Riboulleau.2006. Trace metals as paleoredox and paleoproductivity proxies: An update.Chemical Geology 232(1-2): 12-32. [65] Tyson R.V.,T.H. Pearson.1991. Modern and ancient continental shelf anoxia: An overview.Arctic and Alpine Research 58(1): 1-24. [66] Wang M.,K.N. Li,W.T. Yang,M.Y. Dai,W.B. Bai, and Y.A. Qi.2019. The trace fossilThalassinoides bacae in the Cambrian Zhangxia Formation (Miaolingian Series) of North China. Palaeogeography, Palaeoclimatology, Palaeoecology 534: 109333. DOI: 10.1016/j.palaeo.2019.109333. [67] Wei H.Y.2012. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry.Sedimentary Geology and Tethyan Geology 32(2): 78-90 (in Chinese with English Abstract). [68] Xiang L.,S.D. Schoepfer,H. Zhang,X.L. Yuan,C.Q. Cao,Q.F. Zheng,C.M. Henderson, and S.Z. Shen.2017. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China.Palaeogeography, Palaeoclimatology, Palaeoecology 448: 59-71. [69] Yan C.N.,Z.J. Jin,J.H. Zhao,W. Du, and Q.Y. Liu.2018. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi Formation of the Sichuan Basin, China.Marine and Petroleum Geology 92: 880-894. [70] Yang, Z.Y., Yo-ichiro Otofuji, Z.M. Sun, B.C. Huang.2002. Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results.Geophysical Journal International 151(1): 1-10. [71] Zhang L.J.,Y.A. Qi,L.A. Buatois,M.G. Mángano,Y. Meng, and D. Li.2017. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings. Scientific Reports 7: 45773 (2017). https://doi.org/10.1038/srep45773. [72] Zhang W.,X. Shi,G. Jiang,D. Tang, and X. Wang.2015. Mass-occurrence of oncoids at the Cambrian series 2-series 3 transition: Implications for microbial resurgence following an early Cambrian extinction.Gondwana Research 28(1): 432-450. [73] Ziebis W.,S. Forster,M. Huettel, and B.B. Jørgensen.1996. Complex burrows of the mud shrimpCallianassa truncata and their geochemical impact in the sea bed. Nature 382(6592): 619-622.