1Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India; 2CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826015, Jharkhand, India; 3Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Abstract This study provides a combined analysis on the palynology, fossil charcoal and biomarkers of the subsurface coal deposits from a borehole RMB #2 drilled at the Dhulia Coal Block, Rajmahal Basin, India, in attempts to establish the chronology of sedimentation and to propose palaeobotanical as well as geochemical evidence for the occurrence of wildfires in these sediments. The palynological investigation suggests a Scheuringipollenites barakarensis palynoassemblage from the lower Barakar Formation, dated as Artinskian (Early Permian) in age. This assemblage reveals the dominance of Glossopteridales and sub-dominance of taxa belonging to Cordaitales and Coniferales. Fossil charcoal in sediments is usually recognized as a direct indicator for the occurrence of palaeo-wildfires. More data involving the anatomical features of fossil charcoal analyzed by Field Emission Scanning Electronic Microscope broaden our knowledge on Early Permian wildfires from the peninsula of India. The studied macroscopic charcoal fragments exhibit anatomical details such as homogenized cell walls, uniseriate simple and biseriate alternate pitting on tracheid walls and rays of varying heights pointing to a gymnospermous wood affinitity. The excellent preservation of charcoal fragments, shown by their large sizes and almost unabraded edges, suggests a parautochthonous origin. The embedded biomarker study performed for charcoal sediments and its characterization demonstrate the presence of n-alkanes, isoprenoids, terpenoids and aromatic compounds. A bimodal distribution pattern of n-alkanes with a Cmax at n-C25 is identified. Diterpenoids and pentacyclic terpenoids are identified, indicating the input of an early conifer vegetation and bacterial activity, respectively. The identified polyaromatic hydrocarbon (PAH) compounds, together with the charcoal fragments, clearly suggest that repeated wildfire events occurred during the deposition of these Artinskian sediments in the Rajmahal Basin.
. Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India[J]. , 2021, 10(1): 55-75.
. Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India[J]. Journal of Palaeogeography, 2021, 10(1): 55-75.
[1] Abu Hamad, A.M.B., A. Jasper,D. Uhl.2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic bias or lack of fuel? International Journal of Coal Geology 96-97: 60-71. [2] Anand-Prakash,S.C. Srivastava.1984. Miofloral studies of the Lower Gondwana sediments in Johilla Coalfield, Madhya Pradesh, India.Palaeobotanist 32(3): 243-252. [3] Baksi A.K.,R.S. Tiwari,A. Tripathi, and E. Farrar.1992. Geochemical geochronological and palynological observations on Lower-Cretaceous lavas in the Rajmahal Basin. Abstracts from the National Symposium on Mesozoic Magmatism of the Eastern Margin of India, Patna. University of Patna: pp. 16-17. [4] Ball V.1877. Geology of the Rajmahal Hills.Memoir Geological Survey of India 13:155-248. [5] Balme B.E.1995. Fossil in situ spores and pollen grains: An annotated catalogue.Review of Palaeobotany and Palynology 87: 81-323. [6] Banerjee M.,A. D'Rozario.1988. Biostratigraphy and environment of deposition in the Lower Gondwana sediments of Chuperbhita Coalfield, Rajmahal Hills.Journal of Palaeontological Society of India 33: 73-90. [7] Banerjee M.,A. D'Rozario.1990. Palynostratigraphic correlation of Lower Gondwana sediments in the Chuparbhita and Hura Basins, Rajmahal Hills, East India.Review of Palaeobotany and Palynology 65: 239-255. [8] Banerji J.1993. Plant fossils from Chunakhal, Rajmahal Hills, Bihar.Geophytology 23: 21-80. [9] Banerji J.1995. Recent records of Mesozoic ferns from Rajmahal Basin.Indian Fern Journal 12: 70-78. [10] Banerji J.2000. Megafloral diversity of the upper Gondwana sequence of the Rajmahal Basin, India.Journal of African Earth Science 31: 133-144. [11] Banerji J.,B.N. Jana.1998. Early Cretaceous megafossils from Balidih, Rajmahal Basin, India.Geophytology 27: 33-36. [12] Barnes, M.A.,W.C. Barnes. 1983. Oxic and anoxic diagenesis of diterpenes in lacustrine sediments. In: Bjoroy, M., P. Albrecht, C. Cornford, K. de Groot, G. Eglinton, E. Jalimer, D. Leytheruser, R. Polet, J. Rulltitter, and G. Speers. (Eds.). Advances in Organic Geochemistry 1981. Wiley, Chichester: pp. 289-298. [13] Basile B.P.,B.S. Middleditch, and J. Oró.1984. Polycyclic aromatic hydrocarbons in the Murchison meteorite.Organic Geochemistry 5: 211-216. [14] Belcher C.M.,L. Mander,G. Rein,F.X. Jervis,M. Haworth,S.P. Hesselbo,I.J. Glasspool, and J.C. McElwain.2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change.Nature Geosciences 3: 426-429. [15] Benício J.R.W.,A. Jasper,R. Spiekermann,L. Garavaglia,E.F. Pires-Oliveira N.T.G. Machado, and D. Uhl.2019. Recurrent palaeo-wildfires in a Cisularian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil.PLOS One 14: e0213854. [16] Bhattacharyya A.P.1997. Palynological recognition of the Karharbari-Barakar Formation in the sub-surface sediments of Wardha Coalfield, Maharashtra, India.Palaeobotanist 46: 217-219. [17] Bond W.J.,A.C. Scott.2010. Fire and the spread of flowering plants in the Cretaceous.New Phytologist 188: 1137-1150. [18] Bowman, D.M.J.S., J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson, M.A. Cochrane, C.M. D'Antonio, R.S. Defries, J.C. Doyle, S.P. Harrison, F.H. Johnston, J.E. Keeley, M.A. Krawchuk, C.A. Kull, J.B. Marston, M.A. Moritz, I.C. Prentice, C.I. Roos, A.C. Scott, T.W. Swetnam, G.R. van der Werf,S.J. Pyne.2009. Fire in the Earth system.Science 324: 481-484. [19] Bray, E.E.,Evans, E.D.1961. Distribution ofn-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22: 2-15. [20] Cranwell P.A.1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake.Organic Geochemistry 7: 25-37. [21] Daniel G.2003. 4. Microview of wood under degradation by bacteria and fungi. In: Goodell, B., D.D. Nicholas, T.P. Schultz. (Eds.). Wood Deterioration and Preservation. ACS Symposium Series No. 845, 2003: pp. 34-72. [22] Denis E.H.,J.H. Toney,R. Tarozo,R.S. Anderson,L.D. Roach, and Y. Huang.2012. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection.Organic Geochemistry 45: 7-17. [23] di Pasquo, M.M.,G.W. Grader.2012. The palynology of the Lower Permian (Asselian-?Artinskian) Copacabana Formation of Apillapampa, Cochabamba, Bolivia.Palynology 36: 264-276. [24] Didyk B.M.,B.R.T. Simoneit,S.C. Brassell, and G. Eglinton.1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation.Nature 272: 216-222. [25] Eglinton G.,R.J. Hamilton.1967. Leaf epicuticular waxes.Science 156: 1322-1334. [26] El Atfy H., P. Havlik, P.S. Krüger, J. Manfroi, A. Jasper,D. Uhl.2019. Pre-Quaternary wood decay ‘caught in the act’ by fire — Examples of plant-microbe interactions preserved in charcoal from clastic sediments.Historical Biology 31: 952-961. [27] Finkelstein D.B.,L.M. Pratt,T.M. Curtin, and S.C. Brassell.2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA.Sedimentology 52: 587-599. [28] Flannigan M.D.,M.A. Krawchuk,W.J. de Groot,B.M. Wotton, and L.M. Gowman.2009. Implications of changing climate for global wildland fire.International Journal of Wildland Fire 18: 483-507. [29] George S.C.1992. Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland.Organic Geochemistry 18: 705-723. [30] Ghosh A.K.,S.P. Roy, and T. Laskar.1984. Biostratigraphy and some anamolous petrological properties of Chuparbhita coals, Rajmahal Coalfields, Bihar.Evolutionary Botany and Biostratigraphy, A.K. Ghosh Commemoration Volume: 323-330. [31] Glasspool I.J.,D. Edwards, and L. Axe.2004. Charcoal in the Silurian as evidence for the earliest wildfire.Geology 32: 381-383. [32] Grice K.,B. Nabbefeld, and E. Maslen.2007. Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary.Organic Geochemistry 38: 1795-1803. [33] Hughes W.B.,A.G. Holba, and L.I.P. Dzou.1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks.Organic Geochemistry 17: 3581-3598. [34] Jasper A.,D. Agnihotri,R. Tewari,R. Spiekermann,E.F. Pires,A.A.S. Da Rosa, and D. Uhl.2017. Fires in the mire: Repeated fire events in Early Permian ‘peat forming’ vegetation of India.Geological Journal 52: 955-969. [35] Jasper A.,D. Uhl,D. Agnihotri,R. Tewari,S.K. Pandita,J.R.W. Benício,E.F. Pires,A.S. Da Rosa,G.D. Bhat, and S.K. Pillai.2016. Evidence of wildfires in the Late Permian (Changsinghian) Zewan Formation of Kashmir, India.Current Science 110: 419-423. [36] Jasper A.,M. Guerra-Sommer, A.M.B. Abu Hamad,M. Bamford,M.E.C. Bernardes-de-Oliveira R. Tewari, and D. Uhl.2013. The Burning of Gondwana: Permian fires on the Southern Continent — A palaeobotanical approach.Gondwana Research 24: 148-160. [37] Jasper A.,M. Guerra-Sommer D. Uhl,M.E.C. Bernardes-de-Oliveira A.K. Ghosh,R. Tewari, and M.I. Secchi.2012. Palaeobotanical evidence of wildfires in the Upper Permian of India: Macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin.The Palaeobotanist 61: 75-82. [38] Jha N.,N. Aggarwal.2010. Palynostratigraphy and correlation of Lower Gondwana coal-bearing and associated sediments in Satrajpalli area, Godavari Graben, Andhra Pradesh.Journal of Palaeontological Society of India 55: 147-155. [39] Jha N.,N. Aggarwal.2011. Palynological correlation of coal-bearing horizons in Gundala area, Godavari Graben, India.Journal of Earth System Science 120: 663-679. [40] Jha N.,N. Aggarwal.2012. Permian-Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India.Journal of Earth System Science 121(5): 1257-1285. [41] Jha N.,N. Aggarwal.2015. Peat forming environment of coal-bearing Permian sediments in Kanchinapalli area of Godavary Graben, India.Revista Brasileira de Paleontologia 18(2): 239-250. [42] Jiang C.,R. Alexander,R.I. Kagi, and A.P. Murray.2000. Origin of perylene in ancient sediments and its geological significance.Organic Geochemistry 31: 1545-1559. [43] Jones T.P.,W.G. Chaloner.1991. Fossil charcoal, its recognition and palaeoatmospheric significance.Palaeogeography, Palaeoclimatology, Palaeoecology 97: 39-50. [44] Kawka, O.E.,B.R.T. Simoneit. 1990. Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center. In: Simoneit, B.R.T. (Ed.). Organic Matter Alteration in Hydrothermal Systems: Petroleum Generation, Migration and Biogeochemistry. Applied Geochemistry 5: pp. 17-27. [45] Killops S.D.,M.S. Massoud.1992. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: Evidence for Jurassic vegetation fires.Organic Geochemistry 18: 1-7. [46] Kubik R.,D. Uhl, and L. Marynowski.2015. Evidence of wildfires during deposition of the Upper Silesian Keuper succession.Annales Societatis Geologorum Poloniae 85: 685-696. [47] Kubik R.,L. Marynowski,D. Uhl, and A. Jasper.2020. Co-occurrence of charcoal, polycyclic aromatic hydrocarbons and terrestrial biomarkers in an early Permian swamp to lagoonal depositional system, Paraná Basin, Rio Grande do Sul, Brazil.International Journal of Coal Geology 230: 103590. [48] Laflamme R.E.,R.A. Hites.1978. The global distribution of polycyclic aromatic hydrocarbons in Recent sediments.Geochimica Cosmochimica Acta 42: 289-303. [49] Lindström S.,S. McLoughlin.2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana.Review of Palaeobotany and Palynology 145: 89-122. [50] MacDonald G.M.,C.P.C. Larsen,J.M. Szeicz, and K.A. Moser.1991. The reconstruction of boreal forest fire history from lake sediments — A comparison of charcoal, pollen, sedimentological, and geochemical indexes.Quaternary Science Review 10: 53-71. [51] Mahesh S.,S. Murthy,B. Chakraborty, and M.D. Roy.2015. Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura Coalfield.Journal of Geological Society of India 85: 567-576. [52] Mahesh S.,S. Murthy,S. Gautam,P.A. Souza,P.S. Kavali,M.E.C. Bernardes-de-Oliveira Ram-Awatar, and C.M. Félix.2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database.Palaeoworld 26(4): 638-649. [53] Maheshwari H.K.1967. Studies in the Glossopteris Flora of India — 29. Miospore assemblage from the Lower Gondwana exposures along Bansloi River in Rajmahal Hills, Bihar.The Palaeobotanist 15: 258-280. [54] Marynowski L.,A.C. Scott,M. Zaton,H. Parent, and A.C. Garrido.2011. First multiproxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of the Neuquen Basin, Argentina.Palaeogeography, Palaeoclimatology, Palaeoecology 299: 129-136. [55] Marynowski L.,B.R.T. Simoneit.2009. Widespread Late Triassic to Early Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons.Palaios 24: 785-798. [56] Marynowski L.,M. Zatoń.2010. Organic matter from the Callovian (Middle Jurassic) deposits of Lithuania: Compositions, sources and depositional environments.Applied Geochemistry 25(7): 933-946. [57] Marynowski L.,M.J. Rospondek,R. Meyer,Z.U. Reckendorf, and B.R.T. Simoneit.2002. Phenyldibenzofurans and phenyldibenzothiophenes in marine sedimentary rocks and hydrothermal petroleum.Organic Geochemistry 33: 701-714. [58] Marynowski L.,R. Kubik,D. Uhl, and B.R.T. Simoneit.2014. Molecular composition of fossil charcoal and relationship within complete combustion of wood.Organic Geochemistry 77: 22-31. [59] Meena K.L.2000. Palynodating of subsurface sediments of bore-hole IBH-6 in IB River Coalfield, Orissa, India.Geophytology 29: 111-113. [60] Mishra S.,N. Aggarwal, and N. Jha.2017. Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India). Palaeobiodiversity and Palaeoenvironments 98 (2): 177-204. https://doi.org/10.1007/s12549-017-0302-3. [61] Murthy S.,B. Chakraborthi, and M.D. Roy.2010. Palynodating of subsurface sediments, Raniganj Coalfield, Damodar Basin, West Bengal.Journal of Earth System Sciences 119(5): 701-710. [62] Murthy S.,P.S. Kavali,M. Di Pasquo, and B. Chakraborti.2018. Late Pennsylvanian and Early Cisuralian palynofloras from the Rajmahal Basin, eastern India, and their chronological significance.Historical Biology 32(2): 143-159. DOI: 10.1080/08912963.2018.1529763. [63] Murthy, S., Ram-Awatar,S. Gautam.2014. Palynostratigraphy of Permian succession in the Mand-Raigarh Coalfield, Chhattisgarh, India.Journal of Earth System Science 123(8): 1879-1893. [64] Naraoka H.,A. Shimoyama, and K. Harada.2000. Isotopic evidence from an Antarctic carbonaceous chondrite for two reaction pathways of extraterrestrial PAH formation.Earth and Planetary Science Letters 184: 1-7. [65] Otto A.,H. Walther, and W. Püttmann.1997. Sesqui- and diterpenoid-biomarkers preserved in Taxodium-rich Oligocene oxbow lake clays, Weisselster Basin, Germany.Organic Geochemistry 26(1-2): 105-115. [66] Otto, A. and V. Wilde.2001. Sesqui-, di- and triterpenoids as chemosystematic markers in extant conifers - a review.Botanical Review 67: 141-238. [67] Ourisson G.,P. Albrecht, and M. Rohmer.1979. The Hopanoids: Palaeochemistry and biochemistry of a group of natural products.Pure and Applied Chemistry 51(4): 709-729. DOI: 10.1351/pac197951040709. [68] Philippe M.2011. How many species of Araucarioxylon? Comptes Rendus Palevol 10(2-3): 201-208. [69] Prevec R.,C.C. Labandeira,J. Neveling,R.A. Gastaldo,C.V. Looy, and M. Bamford.2009. Portrait of a Gondwanan ecosystem: A new late Permian fossil locality from KwaZulu-Natal, South Africa.Review of Palaeobotany and Palynology 156: 454-493. [70] Raja Rao, C.S.1987. Coal resources of Bihar (excluding Dhanbad District).Bulletin Geological Survey of India Series 45(IV): 300-322. [71] Ram-Awatar, A. Mukhopadhyay,S. Adhikari.2003. Palynostratigraphy of sub surface Lower Gondwana, Pali sediments, Sohagpur Coalfield, Madhya Pradesh, India.Palaeobotanist 53: 51-59. [72] Ramdahl T.1983. Retene: A molecular marker of wood combustion in ambient air.Nature 306: 580-582. [73] Rao A.R.1943. Jurassic spores and sporangia from the Rajmahal Hills, Bihar.Procedings National Academy Science of India (B) 13(6): 181-197. [74] Rohmer M.,P. Bisseret, and S. Neunlist. 1992. The hopanoids, procaryotic triterpenoids and precursors of ubiquitous molecular fossils. In: Moldowan, J.M., P. Albrecht, and R.P. Philp. (Eds.). Biological Markers in Sediments and Petroleum. Prentice Hall, Engle wood Cliffs, New Jersey: pp. 1-17. [75] Rospondek M.J.,L. Marynowski,A. Chachaj, and M. Góra.2007. Novel arylated polycyclic aromatic thiophenes: Phenylnaphtho[b]thiophenes and naphthylbenzo[b]thiophenes as markers of the organic matter oxidation by rock-water interaction.Organic Geochemistry 38: 1729-1756. [76] Sander P.M.,C.T. Gee.1990. Fossil charcoal: Techniques and applications.Review of Palaeobotany and Palynology 63: 269-279. [77] Sarate O.S.1986. Palynological correlation of the coal seams of Pathakhera Coalfield, Madhya Paradesh, India.Geophytology 16: 239-248. [78] Schwarze, F.W.M.R.2007.Wood decay under the microscope.Fungal Biological Review 21: 133-170. [79] Schweingruber F.H.1990. Mikroskopische Holzanatomie - Formenspektren mitteleuropäischer Stamm - und Zweighölzer zur Bestimmung von rezentem und subfossilem Material. 3rd Edition. Eidg Forschungsanstalt für Wald, Schnee und Landschaft. Birmensdorf: 226 pp. [80] Schweingruber F.H.,A. Börner, and E.D. Schulze.2006. Atlas of Woody Plant Stems: Evolution, Structure, and Environmental Modifications. LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany: 229 pp. DOI: 10.1007/978-3-540-32525-3. [81] Scott A.C.1989. Observations on the nature and origin of fusain.International Journal of Coal Geology 12: 443-475. [82] Scott A.C.2000. The Pre-Quaternary history of fire.Palaeogeography, Palaeoclimatology, Palaeoecology 164: 281-329. [83] Scott A.C.2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis.Palaeogeography, Palaeoclimatology, Palaeoecology 291: 11-39. [84] Scott A.C.,I. Glasspool.2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.Proceedings of the National Academy of Sciences 103(29): 10861-10865. [85] Scott A.C.,T.P. Jones.1994. The nature and influence of fires in Carboniferous ecosystems.Palaeogeography, Palaeoclimatology, Palaeoecology 106: 91-112. [86] Scott A.C.,B.M.J.S. Bowman,W.J. Bond,S.J. Pyne, and M.E. Alexander.2014. Fire on Earth: An Introduction. Wiley Blackwell: 413 pp. [87] Scott A.C.,F. Kenig,R.E. Plotnick,I.J. Glasspool,W.G. Chaloner, and C.F. Eble.2010. Evidence of multiple Late Bashkirian to Early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills.Palaeogeography, Palaeoclimatology, Palaeoecology 291: 72-84. [88] Sengupta S.1988. Upper Gondwana stratigraphy and palaeobotany of Rajmahal Hills, Bihar, India.Memoirs of the Geological Survey of India, Palaeontologia Indica 48: 1-180. [89] Sephton M.A.,G.D. Love,W. Meredith,C.E. Snape,C.G. Sun, and J.S. Watson.2005. Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites.Planetary and Space Science 53: 1280-1286. [90] Sharma B.D.1967. Investigations on the Jurassic flora of Rajmahal Hills, India. 3. A review of the genusPtilophyllum of Morris, with description of two new species from Amarjola in the Rajmahal Hills. Palaeontographica (B) 120: 139-150. [91] Sharma B.D.1969. On a collection of fossil fern from Dhokuti in the Rajmahal Hills, India.Palaeontographica B 128: 55-63. [92] Sharma B.D.1974. Ovule ontogeny inWilliamsonia Carr. Palaeontographica B 148: 137-143. [93] Sharma B.D.1997. An early angiosperm fructification resemblingLesqueria Crane and Dilcher from the Rajmahal Hills, India. Phytomorphology 47: 305-310. [94] Simoneit B.R.T.1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance.Geochimica Cosmochimica Acta 41: 463-476. [95] Simoneit B.R.T.,J.C. Fetzer.1996. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean.Organic Geochemistry 24: 1065-1077. [96] Simoneit B.R.T.,J.O. Grimalt,T.G. Wang,R.E. Cox,P.G. Hatcher, and A. Nissenbaum.1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coal.Organic Geochemistry 10: 877-889. [97] Singh A.P.,Y.S. Kim, and T. Singh. 2016. Bacterial degradation of wood. In: Kim, Y.S., R. Funada, and A.P. Singh. (Eds.). Secondary Xylem Biology. Academic Press, Cambridge: pp. 169-190. [98] Srivastava, S.C.,Anand-Prakash.1984. Palynological succession of the Lower Gondwana sediments in Umaria Coalfield, Madhya Pradesh, India.Palaeobotanist 32(1): 26-34. [99] Srivastava S.C.,H.K. Maheshwari.1974. Palynostratigraphy of the Damuda Group in the Brahmani Coalfield, Rajhamal hills, Bihar.Geophytology 4: 35-45. [100] Srivastava S.C.,O.S. Sarate.1989. Palynostratigraphy of Lower Gondwana sediments from Shobhapur Block, Patherkhera Coalfield, Madhya Pradesh.Palaeobotanist 37: 125-133. [101] Swetnam T.W.1993. Fire history and climate change in giant sequoia groves.Science 262: 885-889. [102] Ten Haven, H.L., J.W. de Leeuw, J. Rullkötter,J.S. Sinninghe Damsté.1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator.Nature 330: 641-643. [103] Tiwari R.S.,A. Tripathi.1992. Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India.Palaeobotanist 40: 194-236. [104] Tiwari R.S.,A. Tripathi.1995. Palynological assemblages and absolute age relationship of Intertrappean beds in the Rajmahal Basin, India.Cretaceous Research 16: 53-72. [105] Tiwari R.S.,P. Kumar, and A. Tripathi. 1984. Palynodating of Dubrajpur and Intertrappean beds in subsurface strata of the north eastern Rajmahal Basin. In: Tiwari, R.S. (Ed.). Vth Indian Geophytological Conference. Palaeobotanical Society, Lucknow: pp. 207-225. [106] Tripathi A.2001. Permian, Jurassic and Early Cretaceous palynofloral assemblages from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin, India. Review of Palaeobotany and Palynology 113: 237-259. [107] Tripathi A.2002. Role of pteridophytic spores in Early Cretaceous stratigraphy and demarcating the Jurassic-Cretaceous Boundary in India. In: Trivedi, P.N. (Ed.). Advances in Pteridology. Pointer Publisher, Jaipur, Rajasthan: pp. 268-279. [108] Tripathi A.2004. Palynology evidences of hitherto unrecognised Jurassic sedimentation in Rajmahal Basin, India.Rìvista Italiana di Paleontologia e Stratigrafia 110: 35-42. [109] Tripathi A.2008. Palynochronology of Lower Cretaceous volcano-sedimentary succession of the Rajmahal formation in the Rajmahal Basin, India.Cretaceous Research 29: 913-924. [110] Tripathi A.,1997. Palynostratigraphy and palynofacies analysis of subsurface Permian sediments in Talcher Coalfield, Orissa.Palaeobotanist 46(3): 79-88. [111] Tripathi A.,A. Ray.2006. Palynology of the Dubrajpur Formation (Early Triassic to Early Cretaceous) of the Rajmahal Basin, India.Palynology 30: 133-149. [112] Tripathi A.,B.N. Jana,O. Verma,R.K. Singh, and A.K. Singh.2013. Early Cretaceous palynomorphs, dinoflagellates and plant mega fossils from the Rajmahal Basin, Jharkhand, India.Journal of Paleontological Society of India 58: 125-134. [113] Tripathi A.,R.S. Tiwari, and P. Kumar.1990. Sporae dispersae and their distributional pattern in subsurface Mesozoic sediments of Rajmahal Basin, Bihar, India.The Palaeobotanist 37: 367-388. [114] Uhl D.,A. Jasper,A.M.D. Abu Hamad, and M. Montenari.2008. Permian and Triassic wildfires and atmospheric oxygen levels.Proceedings of the WSEAS Conferences - Special Issues 13: 179-187. [115] Uhl D.,A. Jasper,T. Schindler, and M. Wuttke.2010. First evidence of palaeo-wildfire in the early Middle Triassic (early Anisian) Voltzia Sandstone Fossil-Lagerstätte — The oldest post-Permian macroscopic evidence of wildfire discovered so far.Palaios 25: 837-842. [116] Uhl D.,M. Wuttke, and A. Jasper.2020. Woody charcoal with traces of pre-charring decay from the Late Oligocene (Chattian) of Norken (Westerwald, Rhineland-Palatinate, W-Germany).Acta Palaeobotanica 60: 43-50. [117] Uhl D.,S. Lausberg,R. Noll, and K.R.G. Stapf.2004. Wildfires in the Late Paleozoic of Central Europe — An overview of the Rotliegend (Upper Carboniferous-Lower Permian) of the Saar-Nahe Basin (SW-Germany).Palaeogeography, Palaeoclimatology, Palaeoecology 207: 23-35. [118] Venkatesan M.I.,J. Dahl.1989. Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary.Nature 338: 57-60. [119] Vishnu-Mittre.1956. Studies on the fossil flora of Nipania, Rajmahal Series, India ‒ Bennettitales.The Palaeobotanist 5: 95-99. [120] Vishnu-Mittre.1958. Studies on the fossil flora of Nipania, Rajmahal Series, India: Pteridophyte and general observations on Nipania fossil flora.The Palaeobotanist 7: 47-66. [121] Vogl R.J.1977. Fire: A destructive menace or a natural process. In: Cairns, J. (Ed.). Symposium on Recovery and Restoration of Damaged Ecosystems. University Press of Virginia, Charlottesville, Virginia: pp. 261-289.