Palaeogeographic reconstruction of a fluvio-marine transitional system in Narmada rift basin, India — Implications on Late Cretaceous global sea-level rise
Abstract Rising sea-levels in tectonically active epicontinental basins often lead to varied depositional settings and palaeogeography, mostly influenced by the net accommodation resulting from mutual interference of the extent and nature of landward encroachment by the sea and the net sedimentation. The Cenomanian Nimar Sandstone Formation, Bagh Group, Narmada rift basin, uniquely portrays the effect of sea-level rise within an intra-cratonic setting and attributes to the corresponding palaeogeographic changes in west-central India. An integrated sedimentological-sequence-stratigraphic study of the broadly fining-upward Nimar Sandstone Formation (thickness ~20-30 m) depicts the actual nature of changeover from a fluvial to a marine-dominated transitional depositional setting. Detailed sedimentological study reveals total seventeen facies, grouped in five facies associations, viz., the channel-fill facies association (FA-1), the overbank facies association (FA-2), the fluvial-dominated fluvio-tidal facies association (FA-3), the tide-dominated fluvio-tidal facies association (FA-4), and the shoreface facies association (FA-5). Overall facies architecture indicates a west-to-eastward marine encroachment, resulting in stacking of three distinct palaeo-depositional conditions: (i) an initial fluvial system with channel and overbank, changing into a tide-influenced fluvial bay-head delta in the inner estuary, followed by (ii) marine encroachment leading to a tide-dominated central estuary with inter- to sub-tidal settings, and finally, (iii) with further intense marine encroachments, a wave-reworked open shore condition in the outer estuary zone. The overall fining-up succession with a systematic change from fluvial to marine-dominated depositional systems points to a landward shift of the shoreline, signifying a major transgressive event correlated to the Cenomanian global sea-level rise. Characteristic stratal stacking patterns point to four coarsening- and fining-up hemicycles, embedded within the major transgressive succession. These high-frequency cycles attest to the varied interplay of sedimentation, tectonics and sea-level changes, and the resultant net accommodations. A palaeogeographic model is proposed based on the high-frequency transgressive-regressive hemicycles, which envisages the evolution of the depositional environments in relation to the Cenomanian eustatic rise in the intra-cratonic riftogenic fluvio-marine transitional basinal setup.
. Palaeogeographic reconstruction of a fluvio-marine transitional system in Narmada rift basin, India — Implications on Late Cretaceous global sea-level rise[J]. , 2021, 10(1): 76-97.
. Palaeogeographic reconstruction of a fluvio-marine transitional system in Narmada rift basin, India — Implications on Late Cretaceous global sea-level rise[J]. Journal of Palaeogeography, 2021, 10(1): 76-97.
[1] Acharya S.K.,T.C. Lahiri.1991. Cretaceous palaeogeography of Indian subcontinent: A review.Cretaceous Research 12: 3-12. [2] Badve R.M.,M.A. Ghare.1980. Ichnofauna of the Bagh Beds from Deva river valley, south of Narmada.Biovigyanam 6: 121-130. [3] Banerjee S.,P. Ghosh,R. Nagendra,B. Bhattacharya,B.G. Desai, and A.K. Srivastava.2020. Marine and fluvial sedimentation including erosion and sediment flux in Peninsular Indian Phanerozoic basins.Proceedings of the Indian National Science Academy 86(1): 351-363. [4] Bansal U.,S. Banerjee,K. Pande, and D.K. Das.2019. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India.Geological Magazine 157(2): 233-247. [5] Best J.L.,R.A. Kostaschuk.2002. An experimental study of turbulent flow over a low angle dune.Journal of Geophysical Research 107(C9): 31-35. [6] Bhattacharya B.,A. Saha.2020. Large soft-sediment deformation structures (SSDS) in the Permian Barren Measures Formation, Pranhita-Godavari Valley, India: Potential link to syn-rift palaeoearthquake events. Journal of Palaeogeography 9 (1): 14. https://doi.org/10.1186/s42501-020-00063-z. [7] Bhattacharya B.,H.N. Bhattacharya.2012. Implications of mud-clast conglomerates within Late Paleozoic Talchir glaciomarine succession, Talchir Gondwana Basin, India.Indian Journal of Geosciences 66(1): 69-78. [8] Bhattacharya B.,P.P. Banerjee.2015. Record of Permian Tethyan transgression in eastern India: A reappraisal of the Barren Measures Formation, West Bokaro Coalfield.Marine and Petroleum Geology 67: 170-179. [9] Bhattacharya B.,S. Jha.2014. Late Cretaceous diurnal tidal system: A study from Nimar Sandstone, Bagh Group, Narmada Valley, central India.Current Science 107(6): 1032-1037. [10] Bhattacharya B.,J. Bhattacharjee,S. Banerjee,S. Bandyopadhyay, and R. Das.2016. Seismites in Permian Barakar Formation, Raniganj Basin, India: Implications on Lower Gondwana basin evolution. Arabian Journal of Geosciences 9 (4): 300. https://doi.org/10.1007/s12517-016-2318-9. [11] Bhattacharya B.,J. Bhattacharjee,S. Banerjee,S. Banerjee, and K. Adhikary.2018. Early Permian transgressive-regressive cycles: Sequence stratigraphic reappraisal of the coal-bearing Barakar Formation, Raniganj Basin, India.Journal of Earth System Sciences 127: 1-29. [12] Bhattacharya B.,S. Bandyopadhyay,S. Mahapatra, and S. Banerjee.2012. Record of tide-wave influence on the coal-bearing Permian Barakar Formation, Raniganj Basin, India. Sedimentary Geology 267-268: 25-35. [13] Bhattacharya H.N.,B. Bhattacharya.2015. Lithofacies architecture and palaeogeography of the Late Paleozoic glaciomarine Talchir Formation, Raniganj Basin, India.Journal of Palaeogeography 4(3): 269-283. [14] Bhattacharya H.N.,B. Bhattacharya,A. Roy, and S. Pal.2015. Late Archaean tidalites from western margin of Chitradurga greenstone belt, southern India.Precambrian Research 257: 109-113. [15] Boersma J.R.,J.H.J. Terwindt.1981. Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary.Sedimentology 28(2): 151-170. [16] Bose P.K.,N.G. Das.1986. A transgressive storm- and fair-weather wave dominated shelf sequence: Cretaceous Nimar Formation, Chakrud, Madhya Pradesh, India.Sedimentary Geology 46(1-2): 147-167. [17] Buatois L.,M.G. Mángano.2011. Ichnology: Organism-substrate interactions in space and time.Geology Magazine 149(4): 750. [18] Catuneanu O.2017. Sequence stratigraphy: Guidelines for a standard methodology, In: Stratigraphy and Timescales, vol. 2, pp. 1-57. Elsevier, Oxford, UK. [19] Chiplonkar G.W.1974. Some unresolved aspects of the Bagh Beds and Wadhwan Formation (Presidential address, Seminar on Indian geology).Publication Center for Advance Study in Geology Chandigarh 11:1A-10A. [20] Chiplonkar G.W.,M.A. Ghare.1975. Some additional trace fossils from the Bagh Beds.Bulletin of the Indian Geological Association 8(1): 71-84. [21] Chiplonkar G.W.,R.M. Badve.1973. Age and affinities of the Bagh fauna — A reassessment. Bulletin of the Indian National Science Academy 45: 19-29. [22] Choi K.S.2010. Rhythmic climbing-ripple cross-lamination in inclined heterolithic stratification (IHS) of a macrotidal estuarine channel, Gomso Bay, West Coast of Korea.Journal of Sedimentary Research 80(6): 550-561. [23] Choi K.S.,R.W. Dalrymple,S.S. Chun, and S. Kim.2004. Sedimentology of modern, inclined heterolithic stratification (IHS) in the macrotidal Han River delta, Korea.Journal of Sedimentary Research 74(5): 677-689. [24] Dalrymple R.W.,K.S. Choi.2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation.Earth-Science Reviews 81(3-4): 135-174. [25] Dalrymple R.W.,B.A. Zaitlin, and R. Boyd.1992. Estuarine facies models: Conceptual basis and stratigraphic implications.Journal of Sedimentary Petrology 62(6): 1130-1146. [26] Desai B.G.2013. Ichnological analysis of transgressive marine tongue in prograding deltaic system: Evidences from Ukra Hill Member, Western Kachchh, India.Journal of the Geological Society of India 82(2): 143-152. [27] Eide C.H.,J.A. Howell,S.J. Buckley,A.W. Martinius,B.T. Oftedal, and G.A. Henstra.2016. Facies model for a coarse‐grained, tide‐influenced delta: Gule Horn Formation (Early Jurassic), Jameson Land, Greenland.Sedimentology 63(6): 1474-1506. [28] Elliott T.1986. Siliciclastic shorelines. In: Sedimentary Environments and Facies, ed. H.G. Reading. Oxford, Blackwell Scientific Publications, pp. 155-188. [29] Förster R.,R. Meyer, and H. Risch.1983. Ammoniten and planktonische Foraminiferen aus den Eibrunner Mergeln (Regensburger Kreide, Nordostbayern).Zitteliana 10: 123-141. [30] Gale A.S.,J. Hardenbol,B. Hathway,W.J. Kennedy,J.R. Young, and V. Phansalkar.2002. Global correlation of Cenomanian (Upper Cretaceous) sequences: Evidence for Milankovitch control on sea level.Geology 30(4): 291-294. [31] Ganguly T.,S. Bardhan.1993. Dimorphism inPlacenticeras mintoi from the Upper Cretaceous Bagh Beds, central India. Cretaceous Research 14(6): 747-756. [32] Greb S.F.,R.L. Martino.2005. Fluvial-estuarine transitions in fluvial-dominated succession: Examples from the Lower Pennsylvanian of the Central Appalachian Basin.Special Publication of the International Association of Sedimentologists 35: 425-451. [33] Gugliotta M.,Y. Saito,V.L. Nguyen,T.K.O. Ta, and T. Tamura.2019. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta, Vietnam.Sedimentology 66(1): 146-164. [34] Hallam A.1992. Phanerozoic Sea-Level Changes. Columbia University Press, New York. [35] Hancock J.M.,E.G. Kauffman.1979. The great transgressions of the Late Cretaceous.Journal of the Geological Society 136(2): 175-186. [36] Haq B.U.2014. Cretaceous eustasy revisited.Global and Planetary Change 113: 44-58. [37] Haq B.U.,J. Hardenbol, and P.R. Vail.1987. Chronology of fluctuating sea levels since the Triassic.Science 235: 1156-1167. [38] Harms J.C.,J.B. Southard, and R.G. Walker.1982. Structures and Sequences in Clastic Rocks. SEPM Short Course No. 9. S.E.P.M., Tulsa, Okla., 851 pp. [39] Harms J.C.,J.B. Southard,D.R. Spearing, and R.G. Walker.1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences: Tulsa, Oklahoma.Society of Economic Paleontologists and Mineralogists (SEPM) Short Course No. 2: 161. [40] Hilbrecht H.,M.A. Arthur, and S.O. Schlanger. 1986. The Cenomanian Turonian boundary event: Sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW-Germany. In: Global Bio-Events, ed. O. Walliser. Lecture Notes in Earth Sciences, 8: 345-351. [41] Jafar S.A.1982. Nannoplankton evidence of Turonian transgression along Narmada Valley, India, and Turonian-Coniacian boundary problem.Journal of the Palaeontological Society of India 27: 17-30. [42] Jaiswal S.,B. Bhattacharya, and S. Chakrabarty.2018. High resolution sequence stratigraphy of Middle Eocene Hazad Member, Jambusar-Broach Block, Cambay Basin, India.Marine and Petroleum Geology 93: 79-94. [43] Jaitly A.K.,R. Ajane.2013. Comments onPlacenticeras mintoi(Vredenburg, 1906) from the Bagh Beds (Late Cretaceous), central India with special reference to Turonian Nodular Limestone Horizon. Journal of the Geological Society of India 81(4): 565-574. [44] Jha S.,B. Bhattacharya, and S. Nandwani.2017. Significance of seismites in the Late Cretaceous transgressive Nimar Sandstone succession, Son-Narmada rift valley, Central India.Geological Journal 52(5): 768-783. [45] Khosla A.,A. Sahni.2000. Late Cretaceous (Maastrichtian) ostracodes from the Lameta Formation, Jabalpur Cantonment area, Madhya Pradesh, India.Journal of the Palaeontological Society of India 45: 57-78. [46] Khosla A.,V.V. Kapur,P.C. Sereno,J.A. Wilson,G.P. Wilson,D. Dutheil,A. Sahni,M.P. Singh,S. Kumar, and R.S. Rana.2003. First dinosaur remains from the Cenomanian-Turonian Nimar Sandstone (Bagh Beds), District Dhar, Madhya Pradesh, India.Journal of the Palaeontological Society of India 48: 115-127. [47] Klein G.D.1971. A sedimentary model for determining paleotidal range.GSA Bulletin 82: 2585-2592. [48] Kumar P.1994. Palynology of carbonaceous clays of the Nimar Formation, Jhabua district, Madhya Pradesh, India.Journal of the Geological Society of India 44:671-674. [49] Kundal P.,B.N. Sanganwar.1998. Stratigraphical, palaeogeographical and palaeoenvironmental significance of fossil calcareous algae from Nimar Sandstone Formation, Bagh Group (Cenomanian-Turonian) of Pipaldehla, Jhabua Dt, MP.Current Science 75: 702-708. [50] Leopold L.B.,M.G. Wolman.1957. River Channel Patterns, Braided, Meandering and Straight. U.S. Geological Survey Paper, Washington D.C., 282-B. [51] Malarkodi N.,S.J. Patel,P.J. Fayazudeen, and U.B. Mallikarjuna.2009. Palaeoenvironmental significance of trace fossils from the Palaeocene sediments of the Pondicherry area, South India.Journal of the Geological Society of India 74(6): 738-748. [52] Malaza N.,K. Liu, and B. Zhao.2013. Facies analysis and depositional environments of the Late Palaeozoic coal-bearing Madzaringwe Formation in the Tshipise-Pafuri Basin, South Africa. ISRN Geology 11. https://doi.org/10.1155/2013/120380. [53] McGowen J.H.,L.E. Garner.1970. Physiographic features and stratification types of coarse-grained point bars: Modern and ancient examples.Sedimentology 14(1-2): 77-111. [54] Miall A.D.1977. Lithofacies types and vertical profile models in braided river deposits: A summary. In: Fluvial Sedimentology, ed. A.D. Miall. Geological Survey of Canada, Calgary, pp. 597-604. [55] Miall A.D.1982. Tertiary sedimentation and tectonics in the Judge Daly Basin, northeast Ellesmere Island Arctic Canada.Geological Survey of Canada Paper 80: 17-30. [56] Miall A.D.2006. The Geology of Fluvial Deposits: Sedimentary Facies, Analysis and Petroleum Geology. Spring-Verlag, New York. [57] Miller K.G.,M.A. Kominz,J.V. Browning,J.D. Wright,G.S. Mountain,M.E. Katz,P.J. Sugarman,B.S. Cramer,N. Christie-Blick, and S.F. Pekar.2005. The Phanerozoic record of global sea-level change.Science 310: 1293-1298. [58] Murty K.N.,B.G. Dhokarikar, and G.P. Verma.1963. Plant fossils in Nimar Sandstone near Umrali, M.P.Current Science 32(1): 21-22. [59] Nagendra R.,B.V. Kamalak Kannan,G. Sen,H. Gilbert,D. Bakkiaraj,A. Nallapa Reddy, and B.C. Jaiprakash.2011. Sequence surfaces and paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery Basin, India.Marine and Petroleum Geology 28(4): 895-905. [60] Nagendra R.,P. Sathiyamoorthy,S. Pattanayak,A. Nallapa Reddy, and B.C. Jaiprakash.2013. Stratigraphy and paleobathymetric interpretation of the Cretaceous Karai shale formation of Uttatur Group, Tamil Nadu, India.Stratigraphy and Geological Correlation 21(7): 675-688. [61] Nichols G.2009. Sedimentology and Stratigraphy. Blackwell Science Ltd., London. [62] Paola C.,S.M. Wiele, and M.A. Reinhart.1989. Upper-regime parallel lamination as the result of turbulent sediment transport and low-amplitude bed forms.Sedimentology 36(1): 47-59. [63] Raiverman V.1975. Facies transition among Nimar, Bagh and Lameta beds.Recent Researches in Geology 2: 123-139. [64] Reineck H.E.,F. Wunderlich.1967. A new method to measure rate of deposition of single lamina on tidal flats and shelf bottoms. 7th International Sedimentological Congress. [65] Reineck H.E.,F. Wunderlich.1969. Die Entstehung von Schichten und Schichtbänken im Watt.Senckenbergiana Maritima 1: 85-106. [66] Reineck H.E.,I.B. Singh.1980. Depositional Sedimentary Environments: With Reference to Terrigenous Clastics. 2nd Rev. and updated ed., 549 pp. Springer-Verlag, Berlin. [67] Richards B.H.,J.P. Bhattacharya.2018. Stratigraphy of the fluvial-to-marine transition zone associated with a forced-regressive compound incised-valley system in the Turonian Ferron Notom Delta, Utah, U.S.A.Journal of Sedimentary Research 88(3): 311-326. [68] Röper M.,M. Rothgaenger.1995. Neue Fossilfunde aus der Regensburger Oberkreide. Teil 1: Eibrunner Mergel.Fossilien 3: 180-184. [69] Ruidas D.K.,S. Paul, and T.K. Gangopadhyay.2018. A reappraisal of stratigraphy of Bagh Group of rocks in Dhar District, Madhya Pradesh with an outline of origin of nodularity of Nodular Limestone Formation.Journal of the Geological Society of India 92(1): 19-26. [70] Sames B.,M. Wagreich,J.E. Wendler,B.U. Haq,C.P. Conrad,M.C. Melinte-Dobrinescu X. Hu,I. Wendler,E. Wolfgring,I. Yilmaz, and S.O. Zorina.2016. Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous.Palaeogeography, Palaeoclimatology, Palaeoecology 441(Part 3): 393-411. [71] Sanganwar B.N.,P. Kundal.1997. Ichnofossils from Nimar Sandstone Formation, Bagh Group of Barwah area, Khargone district, Madhya Pradesh.Gondwana Geological Magazine 12(1): 47-54. [72] Singh D.,U.K. Mishra.2000. Reconstruction of Cretaceous basins of Meghalaya, India.Journal of Indian Association of Sedimentologists 19(1): 59-68. [73] Singh S.K.,H.K. Srivastava.1981. Lithostratigraphy of Bagh Beds and its correlation with Lameta Beds.Journal of the Palaeontological Society of India 26: 77-85. [74] Skelton P.2003. The Cretaceous World. Cambridge University Press, Cambridge. [75] Smith A.B.2010. The Cretaceous Bagh Formation, India: A Gondwanan window onto Turonian shallow-water echinoid faunas.Cretaceous Research 31(4): 368-386. [76] Sundaram R.,R.A. Henderson,K. Ayyasami, and J.D. Stilwell.2001. A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India.Cretaceous Research 22(6): 743-762. [77] Taylor P.D.,R.M. Badve.1995. A new cheilostome bryozoan from the Cretaceous of India and Europe: A cyclostome homeomorph.Palaeontology 38(3): 627-657. [78] Vail P.R.,F. Audemard, S.A. Bowman, P.N. Eisner, and C. Perez-Cruz. 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology — An overview. In: Cycles and Events in Stratigraphy, eds.: G. Einsele, W. Ricken, and A. Seilacher. Springer-Verlag, Berlin, pp. 617-659. [79] van den Berg, J.H., J.R. Boersma,A. van Gelder.2007. Diagnostic sedimentary structures of the fluvial-tidal transition zone — Evidence from deposits of the Rhine and Meuse.Netherlands Journal of Geosciences — Geologie en Mijnbouw 86(3): 287-306.