1Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, China; 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong Province, China
Abstract As the second common type of volcanic vent on Earth, maar-diatreme volcanoes and their post-eruptive lacustrine sediments are a main focus of volcanology, palaeolimnology, palaeoclimatology and palaeontology. A number of maar-type volcanoes have been found in Leizhou Peninsula, South China, but little is known about their eruption processes and detailed stratigraphy of the post-eruptive sediments. We present a combined geophysical and geological analysis to study the eruptive history and post-eruptive sediment stratigraphy of a large maar, the elliptical (1.8×3.0 km2) Jiudouyang (JDY) maar. The stratigraphy revealed by drilling cores shows that the JDY maar has three major stages of evolution: (i) deep-lake sedimentary environment characterized by high autochthonous diatom productivity; (ii) shallow lake to swamp with very low water levels, characterized by a high total organic carbon (TOC) and abundant wood fragments; and, (iii) intermittent shallow lake and alluvial deposits composed of clay minerals and sand. The electrical resistivity tomography (ERT) values and lithological features are highly consistent, which clearly reveal the presence of ca. 50 m thick lacustrine sediments, directly underlain by a ca. 70 m thick basaltic lava rather than diatreme breccia in the crater. This infill sequence implies an alternation of eruption style from phreatomagmatic to Strombolian and/or lava flow, due to high magma flux and ascent rate of the Hainan Plume during the middle Pleistocene. The ERT data also reveal the initial phreatomagmatic crater floor at ca. 120 m depth. The initial crater had a large diameter/depth ratio (ca. 17), with an elongated shape (major axis to minor axis = 0.6), implying possible lateral vent migration during the eruption. A significant erosion under tropical weathering condition during the last few hundred thousand years, accounted for the large size of the maar crater. The study provides insights into the eruptive history and post-eruptive evolution of a large maar, as well as the spatial distribution of the lacustrine sediments.
. A combined geophysical and lithological studies on eruptive history and Quaternary lacustrine stratigraphy of a maar in Leizhou Peninsula, China[J]. , 2021, 10(1): 98-111.
. A combined geophysical and lithological studies on eruptive history and Quaternary lacustrine stratigraphy of a maar in Leizhou Peninsula, China[J]. Journal of Palaeogeography, 2021, 10(1): 98-111.
[1] Amin J.,G.A. Valentine.2017. Compound maar crater and co-eruptive scoria cone in the Lunar Crater Volcanic Field (Nevada, USA).Journal of Volcanology and Geothermal Research 339: 41-51. [2] Auer A.,U. Martin, and K. Nemeth.2007. The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting.Journal of Volcanology and Geothermal Research 159: 225-245. [3] Beck J.W.,W.J. Zhou,C. Li,Z.K. Wu,L. White,F. Xian,X.H. Kong, and Z.S. An.2018. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess.Science 360(6391): 877-881. [4] Blaikie T.N.,L. Ailleres,P.G. Betts, and R.A.F. Cas.2014. Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia.Journal of Geophysical Research: Solid Earth 119(4): 3857-3878. [5] Bolós X.,S. Barde-Cabusson D. Pedrazzi,J. Martí,A. Casas,M. Himi, and R. Lovera.2012. Investigation of the inner structure of La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, Spain). Journal of Volcanology and Geothermal Research 247-248(9): 37-48. [6] Brauer A.,C. Endres, and J.F.W. Negendank.1999. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany.Quaternary International 61(1): 17-25. [7] Brunner I.,S. Friedel,F. Jacobs, and E. Danckwardt.1999. Investigation of a Tertiary maar structure using three-dimensional resistivity imaging.Geophysical Journal International 136(3): 771-780. [8] Chu G.Q.,J.Q. Liu.2018. Maar lakes in China and their significance in paleoclimatic research.Acta Petrologica Sinica 34(1): 4-12 (in Chinese with English Abstract). [9] Chu G.Q.,Q. Sun,P. Rioual,A. Boltovskoy,Q. Liu,P.Q. Sun,J.T. Han, and J.Q. Liu.2008. Dinocyst microlaminations and freshwater "red tides" recorded in Lake Xiaolongwan, northeastern China.Journal of Paleolimnology 39(3): 319-333. [10] Cross W.,J.P. Iddings,L.V. Pirsson, and H.S. Washington.1902. A Quantitative Chemico-Mineralogical Classification and Nomenclature of Igneous Rocks.The Journal of Geology 10: 555-690. [11] Dahlin T.,B. Zhou.2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting 52: 379-398. [12] deGroot-Hedlin, C.,S. Constable.1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data.Geophysics 55(12): 1613-1624. [13] Feng H.,H.F. Zhang, and F.Y. Wang.1995. Genera, species and chemical composition of diatoms from Guangdong Province.Acta Mineralogica Sinica 15(1): 29-35 (in Chinese with English Abstract). [14] Flechsig C.,J. Heinicke,J. Mrlina,H. Kämpf,T. Nickschick,A. Schmidt,T. Bayer,T. Günther,C. Rücker,E. Seidel, and M. Seidl.2015. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic). International Journal of Earth Sciences 104(8): 2087-2105. [15] Flower M.F.J.,M. Zhang,C.Y. Chen,K. Tu, and G. Xie.1992. Magmatism in the South China Basin: 2. Post-spreading Quaternary basalts from Hainan Island, south China.Chemical Geology 97(1-2): 65-87. [16] Gebhardt A.C.,M.D. Batist,F. Niessen,F.S. Anselmetti,D. Ariztegui,T. Haberzettl,C. Kopsch,C. Ohlendorf, and B. Zolitschka.2011. Deciphering lake and maar geometries from seismic refraction and reflection surveys in Laguna Potrok Aike (southern Patagonia, Argentina).Journal of Volcanology and Geothermal Research 201(1): 357-363. [17] Gençalioğlu-Kuşcu C.,C. Atilla,R.A.F. Cas, and K. Ilkay.2007. Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar).Journal of Volcanology and Geothermal Research 159: 198-209. [18] Gevrek A.I.,N. Kazanci.2000. A Pleistocene, pyroclastic-poor maar from central Anatolia, Turkey: Influence of a local fault on a phreatomagmatic eruption.Journal of Volcanology and Geothermal Research 95: 309-317. [19] Graettinger A.H.2018. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. Journal of Volcanology and Geothermal Research 357: 1-13. [20] Ho K.S.,J.C. Chen, and W.S. Juang.2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China.Journal of Asian Earth Sciences 18(3): 307-324. [21] Huang Z.G.,F.X. Chai.1994. A new approach to the Quaternary volcanicity in the Leiqiong area.Tropical Geography 14(1): 1-9 (in Chinese with English Abstract). [22] Huang Z.G.,F.X. Cai, Z.Y. Han, J.H. Chen, Y.Q. Zong, and X.D. Lin. 1993. Quaternary Volcano in the Leizhou and Hainan Region. Beijing: Science Press (in Chinese). [23] Jordan S.C.,R.A.F. Cas, and P.C. Hayman.2013. The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia.Journal of Volcanology and Geothermal Research 254: 5-22. [24] Kereszturi G.,K. Németh,G. Csillag,K. Balogh, and J. Kovács.2011. The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary.Journal of Volcanology and Geothermal Research 201: 227-240. [25] Kereszturi G.,K. Németh,S.J. Cronin,J.N. Procter, and J. Agustinflores.2014. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research 286: 101-115. [26] Kshirsagar P.,C. Siebe,M.N. Guilbaud, and S. Salinas.2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México).Journal of Volcanology and Geothermal Research 318: 114-133. [27] Lebedev S.,S. Chevrot,G. Nolet, and R. van der Hilst.2000. New seismic evidence for a deep mantle origin of the S. China basalts (the Hainan plume?) and other observations in SE Asia.EOS Transactions AGU 81(48): 48-148. [28] Liu J.Q.1999. China Volcano. Beijing: Science Publishing House (in Chinese). [29] Liu J.Q.,H.Y. Lu,J.F.W. Negendank,J. Mingram,X.J. Luo,W.Y. Wang, and G.Q. Chu.2000. Periodicity of Holocene climatic variations in the Huguangyan Maar Lake.Chinese Science Bulletin 45(18): 1712-1717. [30] Loke M.H.2002. RES2DINV ver. 3.54. Rapid 2-D resistivity and IP inversion using the least square method.Geotomo Software. [31] Lorenz V.1986. On the growth of maars and diatremes and its relevance to the formation of tuff rings.Bulletin of Volcanology 48(5): 265-274. [32] Lorenz V.2007. Syn- and posteruptive hazards of maar-diatreme volcanoes.Journal of Volcanology and Geothermal Research 159: 285-312. [33] Martín-Serrano A.,J. Vegas,A. García-Cortés L. Galán,J.L. Gallardo-Millán, S. Martín-Alfageme, F.M. Rubio,P.I. Ibarra,A. Granda,A. Pérez-González, and J.L. García-Lobón.2009. Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe).Sedimentary Geology 222(1): 52-63. [34] Martorana R.,G. Fiandaca,A.C. Ponsati, and P.L. Cosentino.2009. Comparative tests on different multi-electrode arrays using models in near-surface geophysics.Journal of Geophysics and Engineering 6: 1-20. [35] Mingram J.,G. Schettler,N. Nowaczyk,X.J. Luo,H.Y. Lu,J.Q. Liu, and J.F.W. Negendank.2004. The Huguang maar lake-a high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China.Quaternary International 122(1): 85-107. [36] Mrlina J.,H. Kämpf,C. Kroner,J. Mingram,M. Stebich,A. Brauer,W.H. Geissler,J. Kallmeyer,H. Matthes, and M. Seidl.2009. Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys.Journal of Volcanology and Geothermal Research 182(1): 97-112. [37] Németh K.,U. Martin, and S. Harangi.2001. Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary).Journal of Volcanology and Geothermal Research 111: 111-135. [38] Oms O.,X. Bolós,S. Barde-Cabusson J. Martí,A. Casas,R. Lovera,M. Himi,B. Gómez de Soler,G. Campeny Vall-Llosera, D. Pedrazzi, and J. Agustí.2015. Structure of the Pliocene Camp dels Ninots maar-diatreme (Catalan Volcanic Zone, NE Spain).Bulletin of Volcanology 77: 98. [39] Ortiz J.E.,L. Moreno,T. Torres,J. Vegas,B. Ruiz-Zapata, A. García-Cortés, L. Galán, and A. Pérez-González.2013. A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis.Organic Geochemistry 55(2-Part1): 85-97. [40] Pirrung M.,C. Fischer,G. Büchel,R. Gaupp,H. Lutz, and F.O. Neuffer.2003. Lithofacies succession of maar crater deposits in the Eifel area (Germany).Terra Nova 15(2): 125-132. [41] Ross P.S.,S. Delpit,M.J. Haller,K. Németh, and H. Corbella.2011. Influence of the substrate on maar-diatreme volcanoes — An example of a mixed setting from the Pali Aike volcanic field, Argentina.Journal of Volcanology and Geothermal Research 201(1): 253-271. [42] Sasaki Y.1992. Resolution of resistivity tomography inferred from numerical simulation.Geophysical Prospecting 40(4): 453-463. [43] Schulz R.,H. Buness,G. Gabriel,R. Pucher,C. Rolf,H. Wiederhold, and T. Wonik.2005. Detailed investigation of preserved maar structures by combined geophysical surveys.Bulletin of Volcanology 68(2): 95-106. [44] Sheng M.,X.S. Wang,M.J. Dekkers,Y. Chen,G.Q. Chu,L. Tang,J.L. Pei, and Z.Y. Yang.2019. Paleomagnetic secular variation and relative paleointensity during the Holocene in South China-Huguangyan Maar Lake Revisited.Geochemistry, Geophysics, Geosystems 20: 2681-2697. [45] Sonder I.,A.H. Graettinger, and G.A. Valentine.2015. Scaling multiblast craters: General approach and application to volcanic craters.Journal of Geophysical Research: Solid Earth 120: 6141-6158. [46] Sun Q.,Q.C. Fan.2005. Study progress on volcanic phreatomagmatic eruption.Acta Petrologica Sinica 21(6): 1709-1718 (in Chinese with English Abstract). [47] Tu K.,M.F.J. Flower,R.W. Carlson,M. Zhang, and G. Xie.1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a subcontinental lithosphere Dupal source.Geology 19(6): 567-569. [48] Valentine G.A.,A.H. Graettinger,E. Macorps,P.-S. Ross,J.D.L. White,E. Dohring, and I. Sonder.2015. Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes.Bulletin of Volcanology 77: 15. [49] Valentine G.A.,J.D.L. White.2012. Revised conceptual model for maar-diatremes: Subsurface processes, energetics, and eruptive products.Geology 40(12): 1111-1114. [50] Wang F.Y.,H.F. Zhang,H. Feng,G.X. Chen,D.Q. Wang, and H.P. He.1995. A mineralogical study of diatomite in Leizhou Peninsula.Chinese Journal of Geochemistry 14(2): 140-151. [51] Wang N.,Y.Q. Zong,C.R. Brodie, and Z. Zheng.2012. An examination of the fidelity of n-alkanes as a paleoclimate proxy from sediments of Palaeolake Tianyang, South China.Quaternary International 333: 100-109. [52] Wang M.,H.Y. Lu.2019. Age, geochemical composition and their paleoclimatic implications of the basalt in Leizhou Peninsula, Southern China.Quaternary Sciences 39(5): 1071-1082 (in Chinese with English Abstract). [53] Wei S.S.,Y.J. Chen.2016. Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China.Geophysical Research Letters 43: 8978-8985. [54] White J.D.L.,P.S. Ross.2011. Maar-diatreme volcanoes: A review.Journal of Volcanology and Geothermal Research 201(1): 1-29. [55] Wu J.,Z.Y. Zhu,C.Q. Sun,P. Rioual,G.Q. Chu, and J.Q. Liu.2019. The significance of maar volcanoes for palaeoclimatic studies in China.Journal of Volcanology and Geothermal Research 383: 2-15. [56] Xian B.Z.,Y.X. He,H.P. Niu,J.H. Wang,J.P. Liu, and Z. Wang.2018. Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review. Journal of Palaeogeography 7 (1): 11. https://doi.org/10.1186/s42501-018-0010-6. [57] Yancheva G.,N.R. Nowaczyk,J. Mingram,P. Dulski,G. Schettler,J.F.W. Negendank,J.Q. Liu,D.M. Sigman,L.C. Peterson, and G.H. Haug.2007. Influence of the intertropical convergence zone on the East Asian monsoon.Nature 445(7123): 74-77. [58] Yu M.M.,Y. Yan,C.Y. Huang,X.C. Zhang,Z.X. Tian,W.H. Chen, and M. Santosh.2018. Opening of the South China Sea and upwelling of the Hainan plume.Geophysical Research Letters 45: 2600-2609. [59] Zhang S.H.,X.B. Lang,Y.X. Ren,Z.P. Xiao,C.L. Wu, and J.F. Cao.2016. Dynamic analysis on annual variation of underground water level at Leizhou Peninsula in 2014.Pearl River 37(4): 32-35 (in Chinese with English Abstract). [60] Zheng Z.,Z.Q. Lei.1999. A 400,000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China.Palaeogeography, Palaeoclimatology, Palaeoecology 145(4): 339-362. [61] Zheng Z.,J.H. Wang,B. Wang,C.L. Liu,H.P. Zou,H. Zhang,Y. Deng, and Y. Bai.2003. High-resolution records of Holocene from the Shuangchi Maar Lake in Hainan Island.Chinese Science Bulletin 48(5): 497-502. [62] Zhou H.Y.,B.S. Wang,H.Z. Guan,Y.J. Lai,C.F. You,J.L. Wang, and H.J. Yang.2009. Constraints from strontium and neodymium isotopic ratios and trace elements on the sources of the sediments in Lake Huguang Maar.Quaternary Research 72: 289-300. [63] Zolitschka B.1992. Climatic change evidence and lacustrine varves from maar lakes, Germany.Climate Dynamics 6(3-4): 229-232. [64] Zou H.B.,Q.C. Fan.2010. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island.Lithos 116: 145-152.