1Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3University of Chinese Academy of Sciences, Beijing 100049, China; 4Institute of Paleontology, Hebei GEO University, Shijiazhuang 050031, Hebei Province, China; 5Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
Abstract Resultsof our study based on examination of induced precipitation of carbonate by a cyanobacterium, Lyngbya in the laboratory, and the analyses of microphotographs of both modern and ancient microbial carbonates, demonstrated the importance of recognition of mold holes and carbonate crusts in understanding microbial carbonates. In the experiment, only cyanobacteria Lyngbya can induce precipitation of carbonate, forming scattered grains on the surface of Lyngbya filaments. Carbonate crusts enclosing the old parts of the filaments were formed through aggregation of these scatter grains while mold holes were formed after decay of the filaments. Mainly based on the experiment, six different ways of microbial carbonate formation were recognized: (1) trapping without mold holes, (2) trapping with mold holes, (3) particle-forming induced-precipitation of carbonate, (4) discrete crust-forming induced-precipitation of carbonate, (5) induced precipitation, forming tangled crusts that build a porous construction, and (6) induced precipitation, forming a dense construction. And mold holes and crusts can form in ways (4), (5), and (6). Examination of both modern microbial carbonates from the Shark Bay of Australia, Highborne Cay of Bahamas and the atoll of Kiritimati and the microbialites from the Cambrian dolostone sequence in Tarim, Xinjiang, China all demonstrated the limitation of recognizing only mesofabric features and importance of examining microfabric features for understanding of the genesis of the microbial carbonates and their proper classification. The shape, size and arrangement of the mold holes, crusts, and the features of the minerals filling in pores between the crusts, which are referred as the microfabric features here, are keys to better understand the formation and environments of both modern and ancient microbial carbonates.
. Microfabric features of microbial carbonates: Experimental and natural evidence of mold holes and crusts[J]. , 2021, 10(3): 321-333.
. Microfabric features of microbial carbonates: Experimental and natural evidence of mold holes and crusts[J]. Journal of Palaeogeography, 2021, 10(3): 321-333.
[1] Aitken J.D.1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37 (4): 1163-1178. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37 (4): 1163-1178. http://doi.org/10.1306/74D7185C-2B21-11D7-8648000102C1865D. [2] Altermann W.,J. Kazmierczak, A. Oren, and D.T. Wright. 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4 (3): 147-166. J. Kazmierczak, A. Oren, and D.T. Wright. 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4 (3): 147-166. http://doi.org/10.1111/j.1472-4669.2006.00076.x. [3] Arp G.,G. Helms, K. Karlinska, G. Schumann, A. Reimer, J. Reitner, and J. Trichet. 2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiology Journal 29 (1): 29-65. https://doi.org/10.1080/01490451.2010.521436. [4] Arp G.,A. Reimer, and J. Reitner.2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292 (5522): 1701-1704. https://doi.org/10.1126/science.1057204. [5] Bai Y.,P. Luo,S. Wang,C.M. Zhou,X.F. Zhai,S. Wang, and Z.Y. Yang.2017. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Aksu area, Tarim Basin, NW China. Petroleum Exploration and Development 44 (3): 377-386. https://doi.org/10.1016/S1876-3804(17)30044-7. [6] Bosscher H.,W. Schlager.1993. Accumulation rates of carbonate platforms.The Journal of Geology 101(3): 345-355. [7] Bundeleva I.A.,L.S. Shirokova, O.S. Pokrovsky, P. Bénézeth, B. Ménez, E. Gérard, and S. Balor. 2014. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chemical Geology 374-375: 44-60. https://doi.org/10.1016/j.chemgeo.2014.03.007. [8] Burne R.V.,L.S. Moore.1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2 (3): 241-254. https://doi.org/10.2307/3514674. [9] Chen J.T.,J. Lee, and J. Woo. 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 414: 246-259. https://doi.org/10.1016/j.palaeo.2014.09.004. [10] Chen M.,C.T. Xiao, J. Cheng, X.L. Hu, and D.Q. Sun. 2018. Sedimentary characteristics of stromatolites in Cambrian strata in Songzi Liujiachang area and its paleoenvironmental significance. Open Journal of Yangtze Oil and Gas 3 (2): 79-92. https://doi.org/10.4236/ojogas.2018.32007. [11] Couradeau E.,K. Benzerara,E. Gérard,D. Moreira,S. Bernard,G.J. Brown, and P. López-García.2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336 (6080): 459-462. https://doi.org/10.1126/science.1216171. [12] Deng S.B.,P. Guan, B.H. Li, P.X. Liu, and Y.Q. Chen. 2018. Sedimentary texture and formation process of the Lower Cambrian platform marginal zone in the Tarim Basin, NW China. Acta Sedimentologica Sinica 36 (4): 706-721. https://doi.org/10.14027/j.issn.1000-0550.2018.059(in Chinese with English abstract). [13] Dupraz C.,R. Pamela Reid, O. Braissant, A.W. Decho, R.S. Norman, and P.T. Visscher. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96 (3): 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005. [14] Dupraz C.,A. Strasser.1999. Microbialites and micro-encrusters in shallow coral bioherms (middle to late Oxfordian, Swiss Jura Mountains). Facies 40 (1): 101-129. https://doi.org/10.1007/BF02537471. [15] Ezaki Y.,J.B. Liu, N. Adachi, and Z. Yan. 2017. Microbialite development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia Formation (Cambrian Series 3) in Shandong Province, North China. Palaios 32 (9): 559-571. https://doi.org/10.2110/palo.2016.097. [16] Ezaki Y.,J.B. Liu, and N. Adachi.2003. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, South China: Implications for the nature of oceanic conditions after the end-Permian extinction. Palaios 18 (4-5): 388-402. https://doi.org/10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2. [17] Ezaki Y.,J.B. Liu, T. Nagano, and N. Adachi. 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: Initiation and cessation of a microbial regime. Palaios 23 (6): 356-369. https://doi.org/10.2110/palo.2007.p07-035r. [18] Grotzinger J.,Z. Al-Rawahi.2014. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultanate of Oman. AAPG Bulletin 98 (8): 1453-1494. https://doi.org/10.1306/02271412063. [19] Grotzinger J.P.,A.H. Knoll.1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27: 313-358. https://doi.org/10.1146/annurev.earth.27.1.313. [20] Han Z.Z.,Y.Y. Zhao, H.X. Yan, H. Zhao, M. Han, B. Sun, R.R. Meng, D.X. Zhuang, D. Li, W.J. Gao, S.Y. Du, X.A. Wang, K.X. Fan, W.Y. Hu, and M.X. Zhang. 2017. The characterization of intracellular and extracellular biomineralization induced by Synechocystis sp. PCC6803 cultured under low Mg/Ca ratios conditions. Geomicrobiology Journal 34 (4): 362-373. https://doi.org/10.1080/01490451.2016.1197986. [21] Jahnert R.J., andL.B. Collins. 2011. Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology 286: 106-111. https://doi.org/10.1016/j.margeo.2011.05.006. [22] Jiang H.X., andY.S. Wu. 2007. Restudy of the microbialite from the Permian-Triassic boundary section, Chongqing. Acta Petrologica Sinica 23 (5): 1189-1196. https://doi.org/10.3321/j.issn:1000-0569.2007.05.032 (in Chinese with English abstract). [23] Kalkowsky E.1908. Oolith and stromatolith in norddeutschen Buntsandstein.Zeitschrift der Deutschen geologischen Gesellschaft 60: 68-125. [24] Kaźmierczak J.,T. Fenchel,M. Kühl,S. Kempe,B. Kremer,B. Łącka, and K. Małkowski.2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life 5 (1): 744-769. https://doi.org/10.3390/life5010744. [25] Kennard J.M.,N.P. James.1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios 1 (5): 492-503. https://doi.org/10.2307/3514631. [26] Kershaw S.,S. Crasquin,Y. Li,P.Y. Collin,M.B. Forel,X.N. Mu,A. Baud,Y. Wang,S. Xie,F. Maurer, and L. Guo.2012. Microbialites and global environmental change across the Permian-Triassic boundary: A synthesis. Geobiology 10 (1): 25-47. https://doi.org/10.1111/j.1472-4669.2011.00302.x. [27] Kershaw S.,Y. Li,S. Crasquin-Soleau Q.L. Feng,X.N. Mu,P.Y. Collin,A. Reynolds, and L. Guo.2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution. Facies 53 (3): 409-425. https://doi.org/10.1007/s10347-007-0105-5. [28] Kranz S.A.,D. Wolf-Gladrow G. Nehrke,G. Langer, and B. Rosta.2010. Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium. Limnology and Oceanography 55 (6): 2563-2569. https://doi.org/10.4319/lo.2010.55.6.2563. [29] Lee J.H.,J.T. Chen, S.J. Choh, D.J. Lee, Z.Z. Han, and S.K. Chough. 2014. Furongian (Late Cambrian) sponge-microbial maze-like reefs in the North China Platform. Palaios 29 (1): 27-37. https://doi.org/10.2110/palo.2013.050. [30] Liang A.Q.,C. Paulo, Y. Zhu, and M. Dittrich. 2013. CaCO3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains. Colloids and Surfaces B: Biointerfaces 111: 600-608. https://doi.org/10.1016/j.colsurfb.2013.07.012. [31] Liu J.B.,Y. Ezaki, S.R. Yang, H.F. Wang, and N. Adachi. 2007. Age and sedimentology of microbialites after the end-Permian mass extinction in Luodian, Guizhou Province. Journal of Palaeogeography (Chinese Edition) 9 (5): 473-486. https://doi.org/10.3969/j.issn.1671-1505.2007.05.005 (in Chinese with English abstract). [32] Liu S.G.,J.M. Song, P. Luo, H.R. Qing, T. Lin, W. Sun, Z.W. Li, H. Wang, H.L. Peng, Y.Q. Yu, Y. Long, and Y.B. Wan. 2016. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China. Journal of Chengdu University of Technology (Science and Technology Edition) 43 (2): 129-152. https://doi.org/10.3969/j.issn.1671-9727.2016.02.01 (in Chinese with English abstract). [33] Lowenstam, H.A., Weiner, S.1989. On Biomineralization. Oxford University Press, New York, 324 pp. https://doi.org/10.1093/oso/9780195049770.001.0001. [34] McConnaughey, T. 1989. Biomineralization mechanisms. In: Crick, R.E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Boston, MA: Springer, pp. 57-73. https://doi.org/10.1007/978-1-4757-6114-6_5. [35] Obst M.,B. Wehrli, and M. Dittrich.2009. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology 7 (3): 324-347. https://doi.org/10.1111/j.1472-4669.2009.00200.x. [36] Patterson M.2014. Geomicrobial Investigation of Thrombolites in Green Lake, New York and Highborne Cay, Bahamas [Master thesis]. University of Connecticut, Connecticut, USA, pp. 1-133. [37] Planavsky N., andR.N. Ginsburg. 2009. Taphonomy of modern marine Bahamian microbialites. Palaios 24 (1): 5-17. https://doi.org/10.2110/palo.2008.p08-001r. [38] Reid R.P.,N.P. James,I.G. Macintyre,C.P. Dupraz, and R.V. Burne.2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 49 (1): 299-324. https://doi.org/10.1007/s10347-003-0036-8. [39] Reid R.P.,I.G. Macintyre,K.M. Browne,R.S. Steneck, and T. Miller.1995. Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33 (1): 1-17. https://doi.org/10.1007/BF02537442. [40] Reid R.P.,I.G. Macintyre, and R.S. Steneck.1999. A microbialite/algal ridge fringing reef complex, Highborne Cay, Bahamas. Atoll Research Bulletin 465: 1-18. https://doi.org/10.5479/si.00775630.465.1. [41] Reid R.P.,P.T. Visscher,A.W. Decho,J.F. Stolz,B.M. Bebout,C. Dupraz,I.G. Macintyre,H.W. Paerl,J.L. Pinckney,L. Prufert-Bebout T.F. Steppe, and D.J. DesMarais.2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406 (6799): 989-992. https://doi.org/10.1038/35023158. [42] Riding R.1977. CalcifiedPlectonema(blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 20(1): 33-46. [43] Riding R.1991. Classification of microbial carbonates. In: R. Riding, (ed.), Calcareous Algae and Stromatolites. Berlin: Springer-Verlag, pp. 21-51. [44] Riding R.2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4 (4): 299-316. https://doi.org/10.1111/j.1472-4669.2006.00087.x. [45] Riding R.2011. Microbialites, stromatolites, and thrombolites. In: J. Reitner, and V. Thiel, (eds.), Encyclopedia of Geobiology. Encyclopedia of Earth Science Series. Springer, Heidelberg, pp. 635-654. [46] Shapiro R.S.,S.M. Awramik.2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian-Early Ordovician sequences. The Journal of Geology 108 (2): 171-180. https://doi.org/10.1086/314394. [47] Song J.M.,P. Luo,S.S. Yang,X.F. Zhai,G. Zhou, and P.P. Lu.2012. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area, Tarim Basin.Journal of Palaeogeography (Chinese Edition) 14(3): 341-354 (in Chinese with English abstract). [48] Suosaari E.P.,R.P. Reid, T.A.A. Araujo, P.E. Playford, D.K. Holley, K.J. McNamara, and G.P. Eberli. 2016. Environmental pressures influencing living stromatolites in Hamelin Pool, Shark Bay, western Australia. Palaios 31 (10): 483-496. https://doi.org/10.2110/palo.2016.023. [49] Theisen C.H.,D.Y. Sumner.2016. Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin, California and Nevada. Sedimentology 63 (7): 2217-2252. https://doi.org/10.1111/sed.12304. [50] Wang H.F.,J.B. Liu, and Y. Ezaki.2012. Sea-level changes at the Dawen Permian-Triassic boundary section of Luodian, Guizhou Province, South China: A global correlation.Acta Scientiarum Naturalium Universitatis Pekinensis 48(4): 589-602 (in Chinese with English abstract). [51] Wang J.,R.L. Zhuang,K.T. Lao, and G.H. Long.1990. Division and geological implications of calcareous algal morphological groups and environmental zones in the Lower Cambrian Qingxudong Formation, Huayuan district, western Hunan.Sedimentary Facies and Palaeogeography 10(3): 9-19 (in Chinese with English abstract). [52] Wang M.M.,L. Yang,X.Y. Xu,W. Zhang, and L.Q. Wang.2017. Geitlerinema ionicum — A newly recorded genus and species of Cyanophyta in China. Journal of Shanghai Ocean University 26 (2): 258-262. https://doi.org/10.12024/jsou.20160601805 (in Chinese with English abstract). [53] Wang Y.B.,J.N. Tong,J.S. Wang, and X.G. Zhou.2005. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin 50 (7): 665-671. https://doi.org/10.1360/982004-323. [54] Webb G.E.2001. Biologically induced carbonate precipitation in reefs through time. In: G. D. Jr. Stanley (ed.), The History and Sedimentology of Ancient Reef Systems. New York: Springer, pp. 159-203. [55] Wu Y.S.,H.X. Jiang, G.L. Yu, and L.J. Liu. 2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China. Journal of Palaeogeography (Chinese Edition) 20 (5): 737-775. https://doi.org/10.7605/gdlxb.2018.05.053 (in Chinese with English abstract). [56] Wu Y.S.,G.L. Yu,R.H. Li,L.R. Song,H.X. Jiang,R. Riding,L.J. Liu,D.Y. Liu, and R. Zhao.2014. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance.Scientific Reports 4(3820): 1-5. [57] Wu Y.Y.,T.S. Zhang, J.L. Lü, and Y. Liu. 2017. The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing, China. Journal of Palaeogeography 6 (2): 117-131. https://doi.org/10.1016/j.jop.2017.03.003. [58] Yan H.X.,Z.Z. Han,H. Zhao,S.X. Zhou,N.J. Chi,M. Han,X.Y. Kou,Y. Zhang,L.L. Xu,C.C. Tian, and S. Qin.2014. Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium. Chinese Journal of Oceanology and Limnology 32 (3): 503-510. https://doi.org/10.1007/s00343-014-3150-2. [59] Yan Z.,J.B. Liu, Y. Ezaki, N. Adachi, and S.X. Du. 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China. Palaeogeography, Palaeoclimatology, Palaeoecology 474: 45-57. https://doi.org/10.1016/j.palaeo.2016.07.009. [60] Yang H.,S.X. Zhang, H.S. Jiang, and Y.B. Wang. 2006. Age and general characteristics of calcimicrobialite near the Permian-Triassic boundary in Chongyang, Hubei Province. Earth Science (Journal of China University of Geosciences) 31 (2): 165-170. https://doi.org/10.3321/j.issn:1000-2383.2006.02.004 (in Chinese with English abstract). [61] You X.L.,S. Sun, and J.Q. Zhu.2014. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China. Science China Earth Sciences 57 (12): 2901-2913. https://doi.org/10.1007/s11430-014-4935-z. [62] Zhang X.L.,D.G. Shu, J. Han, Z.F. Zhang, J.N. Liu, and D.J. Fu. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research 25 (3): 896-909. https://doi.org/10.1016/j.gr.2013.06.001. [63] Zheng J.F.,Y.Q. Chen,L.L. Huang,W. Yan,X.F. Ni,B.H. Li, and X.Y. Guo.2019. Reservoir modeling of the Lower Cambrian Xiaoerblak Formation in the Sugaitblak Section and its significance for exploring regions in the Tarim Basin, NW China.Acta Sedimentologica Sinica 37(3): 601-609 (in Chinese with English abstract). [64] Zhu T.T., andM. Dittrich. 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology 4: 4. https://doi.org/10.3389/fbioe.2016.00004.