Deltas: a new classification expanding Bates's concepts
Carlos Zavalaa,b,*, Mariano Arcuria,b, Mariano Di Meglioa,b, Agustin Zorzanob, Germán Otharána,b, Ainara Irastorzaa,c, Antonela Torresia,c
aDpto. de Geología, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; bGCS Argentina SRL, Molina Campos 150, 8000 Bahía Blanca, Argentina; cConsejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Buenos Aires, Argentina
Abstract Deltas constitute complex depositional systems formed when a land-derived gravity-flow (carrying water and sediments) discharges into a marine or lacustrine standing body of water. However, the complexity of deltaic sedimentary environments has been oversimplified by geoscientists over the years, considering just littoral deltas as the unique possible type of delta in natural systems. Nevertheless, a rational analysis suggests that deltas can be much more complex. In fact, the characteristics of deltaic deposits will depend on a complex interplay between the bulk density of the incoming flow and the salinity of the receiving water body. This paper explores the natural conditions of deltaic sedimentation according to different density contrasts. The rational analysis of deltaic systems allows to recognize three main fields for deltaic sedimentation, corresponding to (1) hypopycnal (2) homopycnal and (3) hyperpycnal delta settings. The hypopycnal delta field represents the situation when the bulk density of the incoming flow is lower than the density of the water in the basin. According to the salinity of the receiving water body, three different types of hypopycnal littoral deltas are recognized: hypersaline littoral deltas (HSLD), marine littoral deltas (MLD), and brackish littoral deltas (BLD). The basin salinity will determine the capacity of the delta for producing effective buoyant plumes, and consequently the characteristics and extension of prodelta deposits. Homopycnal littoral deltas form when the density of the incoming flow is roughly similar to the density of the water in the receiving basin. This situation is typical of clean bedload-dominated rivers entering freshwater lakes. Delta front deposits are dominated by sediment avalanches. Typical fallout prodelta deposits are absent or poorly developed since no buoyant plumes are generated. Hyperpycnal deltas form when the bulk density of the incoming flow is higher than the density of the water in the receiving basin. The interaction between flow type, flow density (due to the concentration of suspended sediments) and basin salinity defines three types of deltas, corresponding to hyperpycnal littoral deltas (HLD), hyperpycnal subaqueous deltas (HSD), and hyperpycnal fan deltas (HFD). Hyperpycnal littoral deltas are low-gradient shallow-water deltas formed when dirty rivers enter into brackish or normal-salinity marine basins, typically in wave or tide-dominated epicontinental seas or brackish lakes. Hyperpycnal subaqueous deltas represent the most common type of hyperpycnal delta, with channels and lobes generated in marine and lacustrine settings during long-lasting sediment-laden river-flood discharges. Finally, hyperpycnal fan deltas are subaqueous delta systems generated on high-gradient lacustrine or marine settings by episodic high-density fluvial discharges.
[1] Allen G.P.,F. Mercier.1987. Les deltas: Sédimentologie et exploration pétrolière.Bulletin de la Société Géologique de France 8(7): 1247-1269. [2] Bagnold R.A.1962. Auto-suspension of transported sediment: Turbidity currents.Proceedings of the Royal Society of London A265: 315-319. [3] Barrell J.1912. Criteria for the recognition of ancient delta deposits.Geological Society of America Bulletin 23: 377-446. [4] Bates C.1953. Rational theory of delta formation.American Association of Petroleum Geologists Bulletin 37: 2119-2162. [5] Baudin F.,E. Stetten,J. Schnyder,K. Charlier,P. Martinez,B. Dennielou, and L. Droz.2017. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A rock-eval survey.Deep Sea Research Part II: Topical Studies in Oceanography 142: 75-90. DOI:10.1016/j.dsr2.2017.01.008. [6] Baudin F., C. Rabouille,B. Dennielou.2020. Routing of terrestrial organic matter from the Congo River to the ultimate sink in the abyss: a mass balance approach (André Dumont medallist lecture 2017).Geologica Belgica 23(1-2): 41-52. DOI:10.20341/gb.2020.004. [7] Bell C.M.2009. Quaternary lacustrine braid deltas on Lake General Carrera in southern Chile.Andean Geology 36(1): 51-65. [8] Bhattacharya, J. P. and J. A. MacEachern.2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America.Journal of Sedimentary Research 79: 184-209. [9] Bourget J.,S. Zaragosi,T. Mulder,J.L. Schneider,T. Garlan,A. Van Toer,V. Mas, and N. Ellouz-Zimmermann.2010. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: A case study from the Al Batha turbidite system, Oman margin.Sedimentary Geology 229(3): 144-159. [10] Breda A.,D. Mellere, and F. Massari.2007. Facies and processes in a Gilbert-delta-filled incised valley (Pliocene of Ventimiglia, NW Italy).Sedimentary Geology 200: 31-55. [11] Cantelli A.,S. Johnson,J.D.L. White, and G. Parker.2008. Sediment sorting in the deposits of turbidity currents created by experimental modeling of explosive subaqueous eruptions.The Journal of Geology 116(1): 76-93. DOI:10.1086/524676 [12] Catuneanu O, V. Abreu, J.P. Bhattacharya, M.D. Blum, R.W. Dalrymple, P.G. Eriksson, C.R. Fielding, W.L. Fisher, W.E. Galloway, M.R. Gigbling, K.A. Giles, J.M. Holbrook, R. Jordan, C.G. Kendall, B. Marcuda, O.J. Martinsen, A.D. Miall, J.E. Neal, D. Nummedal, L. Pomar, H.W. Posamentier, B.R. Pratt, J.F. Sarg, K.W. Shanley, R.J. Steel, A. Strasser, M.E. Tucker,C. Winker.2009. Towards the standardization of sequence stratigraphy.Earth-Science Reviews 92:1-33 [13] Colella A.,P.L. De Boer, and S.D. Nio.1987. Sedimentology of a marine intermontane Pleistocene Gilbert-type fan-delta complex in the Crati Basin, Calabria, southern Italy.Sedimentology 34: 721-736. [14] Coleman, J.M.,S.M. Gagliano. 1965. Sedimentary structures: Mississippi River deltaic plain. In: Primary Sedimentary Structures and Their Hydrodynamic Interpretation, ed. G.V. Middleton. AAPG Special Publications 12: 133-148. [15] Coleman, J.M.,L.D. Wright. 1975. Modern river deltas: variability of processes and sand bodies. In: Deltas - Models for Exploration, ed. M.L. Broussard. Houston Geological Society, Houston, Texas, pp. 99-149. [16] Coleman, J.M.,D.B. Prior. 1982. Deltaic environments. In: Sandstone Depositional Environments, ed. P.A. Scholle and D.R. Spearing, AAPG Memoir 31: 139-178. [17] Conrad C.,S.W. Dech, M. Hafeez, J.P.A. Lamers, and B. Tischbein. 2013. Remote sensing and hydrological measurement based irrigation performance assessments in the upper Amu Darya Delta, Central Asia. Physics and Chemistry of the Earth, Parts A/B/C 61-62: 52-62, ISSN 1474-7065, https://doi.org/10.1016/j.pce.2013.05.002. [18] Cummings D.I.,R.W. Dalrymple,K. Choi, and J.H. Jin.2015. The Tide-Dominated Han River Delta, Korea: Geomorphology, Sedimentology, and Stratigraphic Architecture: Amsterdam, Netherlands, Elsevier, 376 p. [19] Curray J.R.,F.J. Emmel, and D.G. Moore.2002. The Bengal fan: morphology, geometry, stratigraphy, history and processes.Marine and Petroleum Geology 19: 1191-1223. DOI:10.1016/s0264-8172(03)00035-7. [20] Deville E.,A. Mascle,Y. Callec,P. Huyghe,S. Lallemant,O. Lerat,X. Mathieu,C. Padron de Carillo,M. Patriat,T. Pichot,B. Loubrieux, and D. Granjeon.2015. Tectonics and sedimentation interactions in the east Caribbean subduction zone: an overview from the Orinoco delta and the Barbados accretionary prism.Marine and Petroleum Geology 64: 76-103. [21] Elliot T.1986. Deltas. In: Sedimentary Environments and Facies, ed. H.G. Reading. Blackwell Scientific Publications, Oxford, pp. 113-154. [22] Flores R.M.1990. Transverse and longitudinal gilbert-type deltas, Tertiary Coalmont Formation, North Park Basin, Colorado, USA. In: Coarse Grained Deltas, ed. A. Colella and D.B. Prior, vol. 10, 223-233. International Association of Sedimentologists Special Publication. DOI: 10.1002/9781444303858.ch12. [23] Fischer H.B.,J.E. List, C.R. Koh, J. Imberger, and N.H. Brooks. 1979. Mixing in Inland and Coastal Waters. Academic Press, New York, 483 p. [24] Fisher W.L.,L.F. Brown Jr., A. J. Scott, and J.H. McGowen.1969. Delta systems in the exploration of oil and gas. Bureau of Economic Geology, University of Texas. 212p. [25] Fisk H.N.1944. Geological Investigation of the Alluvial Valley of the Lower Mississippi River. US Corps of Engineers, Mississippi River Commission., Vicksburg, MS, 78 pp. 33 plates. [26] Fisk H.N.,E. McFarlan Jr., C.R. Kolb, and L.J. Wilbert Jr.1954. Sedimentary framework of the modern Mississippi delta.Journal of Sedimentary Petrology 24: 76-99. [27] Flood R.D.,D.J.W. Piper.1997. Amazon fan sedimentation: the relationship to [28] equatorial climate change, continental denudation, and sea-level fluctuations.Proceedings of Ocean Drilling Program Scientific Results 155: 653-675. [29] Galloway W.E.1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Deltas -- Models for Exploration, ed. M.L. Broussard, Houston Geological Society, Houston, Texas, pp. 87-98. [30] Gani, M.R.,J.P. Bhattacharya. 2005. Lithostratigraphy versus chronostratigraphy in facies correlations of Quaternary deltas: application of bedding correlation. In: River Deltas: Concepts, Models, and Examples, ed. J.P. Bhattacharya and L. Giosan, SEPM Special Publications 83, p. 31-48. [31] Gao W.,G. Li,X. Wang,T. Sun,Y. Liu, and L. Cao.2014. Sedimentary characteristics of the hyperpycnal flow in the modern Yellow River Delta.Indian Journal of Geo-Marine Sciences 43(8): 1438-1448. [32] Gao W., S. Liu, J. Liu, Y. Xu,P. Li.2018. The sedimentary facies and dynamic environment of the Diaokou lobe in the modern Huanghe River Delta of China.Acta Oceanologica Sinica 37(11): 40-52. DOI: 10.1007/s13131-018-1332-z. [33] Gilbert G.K.1885. The topographic features of lake shores.US Geological Survey Annual Report 5: 69-123. [34] Griggs G.B.,L.D. Kulm,A.C. Waters, and G.A. Fowler.1970. Deep-sea gravel from Cascadia channel.The Journal of Geology 78(5): 611-619. [35] Hage S.,M.J.B. Cartigny,E.J. Sumner,M.A. Clare,J.E. Hughes Clarke,P.J. Talling,D.G. Lintern,S.M. Simmons,R.S. Jacinto,A.J. Vellinga,J.R. Allin,M. Azpiroz-Zabala J.A. Gales,L. Jamie,J.L. Hizzett,J.E. Hunt,A. Mozzato,D.R. Parsons,E.L. Pope,C.D. Stacey,W.O. Symons,M.E. Vardy, and C. Watts.2019. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.Geophysical Research Letters 46: 11310-11320. [36] Hoyal, D.C.J.D., J.C. Van Wagoner, N.L. Adair, M. Deffenbaugh, D. Li, T. Sun, C. Huh,D.E. Griffin.2003. Sedimentation from Jets: A depositional model for clastic deposits of all scales and environments. Search and Discovery Article 40082 (Online-Journal; AAPG/Datapages, Inc., 1444 South Boulder, Tulsa, OK, 74119, USA). [37] Inbar M.1987. Effects of a high magnitude flood in a Mediterranean climate: a case study in the Jordan River basin. In: Catastrophic Flooding, ed. L. Mayerand and D. Nash, London: Allen and Unwin, 333-353. [38] Irastorza A.,C. Zavala,M. Irastorza, and M. Turienzo.2018. Depósitos de prodelta en el Miembro Agua de la Mula (Hauteriviano Tardio - Barremiano Temprano), Formación Agrio, Cuenca Neuquina. 16 Reunión Argentina de Sedimentología, Actas: 158, General Roca. [39] Jervey M.T.1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Sea-Level Changes: An Integrated Approach, ed. C.K. Wilgus, B.S. Hasting, C.G.St.C. Kendall, H.W. Posamentier, C.A. Ross, and J.C.,Van Wagoner, Tulsa, OK, Society of Economic Paleontologists and Mineralogists, Special Publication 42, p. 47-69. [40] Khripounoff A.,A. Vangriesheim,N. Babonneau,P. Crassous,B. Dennielou, and B. Savoye.2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth.Marine Geology 194(3-4): 151-158. [41] Kim S. A.2001. Discharge of Buoyant Fluid Jets and Particle-Laden Jets into Stratified Ambient Fluid. Ph.D. thesis, University of British Columbia, October 2001, 164 pp. [42] Kuehl S. A.,B. M. Levy,W. S. Moore, and M. A. Allison.1997. Subaqueous delta of the Ganges-Brahmaputra river system.Marine Geology 144(1-3): 81-96. DOI:10.1016/s0025-3227(97)00075-3 [43] Lamb M. P.,P. M. Myrow,C. Lukens,K. Houck, and J. Strauss.2008. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, U.S.A.Journal of Sedimentary Research 78: 480-498. [44] Lee H.,V. Galy,X. Fend,C. Ponton,A. Galy,C. France-Lanord, and S.J. Feakins.2019, Sustained wood burial in the Bengal Fan over the last 19 My. Proceedings of the National Academy of Sciences of the United States of America 116: 22,518-22,525, https://doi.org/10.1073/pnas.1913714116. [45] Lin W.,J.P. Bhattacharya.2020. Storm-flood-dominated delta: A new type of delta in stormy oceans. Sedimentology 68: 1109-1136. https://doi.org/10.1111/sed.12819 [46] Liu J. T.,S. J. Kao,C. A. Huh, and C. C. Hung.2013. Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area.Annual Review of Marine Science 5: 47-68. DOI: 10.1146/annurev-marine-121211-172307. [47] Luo Z.,J. Zhu,H. Wu, and X. Li.2017. Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas. Journal of Geophysical Research: Oceans 122: 10,073-10,090 https://doi.org/10.1002/2017JC013215. [48] Macquaker J.H.S.,S.J. Bentley, and K.M. Bohacs.2010. Wave-enhanced sediment gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions.Geology 38: 947-950. [49] Marcomini S. C.,A. Tripaldi,P. Leal,R. A. López,M. S. Alonso,P. Ciccioli,A. Quesada, and P. Bunicontro.2018. Morfodinámica y sedimentación de un sector del frente deltaico del Paraná (1933-2016), Provincia de Buenos Aires, Argentina.Revista de la Asociación Geológica Argentina 75: 1-16. [50] Miall A.D.1984. Deltas. In: Facies Models, ed. R.G. Walker, 2nd ed., Geoscience Canada Reprint Series 1, p. 105-118. [51] Mulder T.,J.P.M. Syvitski.1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans.Journal of Geology 103: 285-299. [52] Mulder T.,J.P.M. Syvitski,S. Migeon,J.C. Faugéres, and B. Savoye.2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review.Marine and Petroleum Geology 20: 861-882. [53] Mutti E.,G. Davoli,R. Tinterri, and C. Zavala.1996. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins.Memorie di Scienze Geologiche, Universita di Padova 48: 233-291. [54] Mutti E.,R. Tinterri,G. Benevelli,D. Di Biase, and G. Cavanna.2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins.Marine and Petroleum Geology 20: 733-755. [55] Nakajima T.2006. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea.Journal of Sedimentary Research 76(1): 59-72. [56] Nemec W.1990. Aspects of sediment movement on steep delta slope. In: Coarse-Grained Deltas, ed. A. Colella, and D.B. Prior, vol. 10, 29-73. International Association of Sedimentologists Special Publication, https://doi.org/10.1002/9781444303858.ch3. [57] Nemec W.1995. The dynamics of deltaic suspension plumes. In: Geology of Deltas, ed. M.N. Oti, and G. Postma, Rotterdam, A.A., Balkema, p. 31-93. [58] Nittrouer C.A., S.A. Kuehl, D.J. Demaster,R.O. Kowsmann.1986. The deltaic nature of Amazon shelf sedimentation.Geological Society of America Bulletin 97: 444-458 [59] Oceanlife Water Salinity Converter 2017. Converter 2017. https://www.oceanlife.it/index.php/en/19-notizie/370-water-salinity-converter-en. Last accessed 1/7/2021. [60] Orton G.J.,H.G. Reading.1993. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size.Sedimentology 40: 475-512. [61] Overeem I.,S.B. Kroonenberg, and A. Veldkamp.2003. Small-scale stratigraphy in a large ramp delta: Recent and Holocene sedimentation in the Volga delta, Caspian Sea.Sedimentary Geology 159: 133-157. [62] Paim P.S.G., E.L.C. Lavina, U.F. Faccini, A.S. Da Silveira, H.A. Leanza, and R.S.F. D’Avila. 2011. Fluvial-derived turbidites in the Los Molles Formation (Jurassic of the Neuquén Basin): Initiation, transport, and deposition. In: Sediment Transfer from Shelf to Deep Water - Revisiting the Delivery System, ed. R.M. Slatt and C. Zavala, vol 61: 95-116. AAPG Studies in Geology. Tulsa [63] Panin N., L. Tiron Dutu,F. Dutu2016. The Danube delta: An overview of its Holocene evolution.Méditerranée 126: 37-54. [64] Parsons J.R.,J.W.M. Bush, and J.P.M. Syvitski.2001. Hyperpycnal plume formation from riverine outflows with small sediment concentrations.Sedimentology 48: 465-478. [65] Petersen S.V.,C.R. Tabor,K.C. Lohmann,C.J. Poulsen,K.W. Meyer,S.J. Carpenter,J.M. Erickson,K.K.S. Matsunaga,S.Y. Smith, and N.D. Sheldon.2016. Temperature and salinity of the Late Cretaceous Western Interior Seaway. Geology 44(11): 903-906. https://doi.org/10.1130/G38311.1. [66] Plint A.G.2013. Mud dispersal across a Cretaceous prodelta: Storm‐generated, wave‐enhanced sediment gravity flows inferred from mudstone microtexture and microfacies.Sedimentology 61: 609-647. [67] Postma G.,T.B. Roep.1985. Resedimented conglomerates in the bottomsets of Gilbert-type gravel deltas.Journal of Sedimentary Research 55: 874-885. [68] Prior, D.B.,B.D. Bornhold. 1990. The underwater development of Holocene fan deltas. In: Coarse-Grained Deltas, ed. A. Colella and D.B. Prior, vol 10, 75-90. International Association of Sedimentologists Special Publication. [69] Pritchard D.,C. Gladstone.2009. Reversing buoyancy inturbidity currents: Developing a hypothesis forflowtransformation and for deposit facies and architecture.Marine and Petroleum Geology 26(10): 1997-2010, DOI:10.1016/j.marpetgeo.2009.02.010. [70] Rajchl M.,D. Uličný, and K. Mach.2008. Interplay between tectonics and compaction in a rift‐margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic.Sedimentology 55: 1419-1447. [71] Schieber J.2016. Mud re-distribution in epicontinental basins - Exploring likely processes.Marine and Petroleum Geology 71: 119-133. [72] Shanmugam G.2018. The hyperpycnite problem. Journal of Palaeogeography 7 (3): 6. https://doi.org/10.1186/s42501-018-0001-7. [73] Simpson J.E.1982. Gravity currents in the laboratory, atmosphere, and ocean. Annual Review of Fluid Mechanics. 14(1): 213-234. http://dx.doi.org/10.1146/annurev.fl.14.010182.001241. [74] Smith D.,H. JOL.1997. Radar structure of a Gilbert-type delta, Peyto Lake, Banff National Park, Canada.Sedimentary Geology 113(3-4): 195-209. DOI: 10.1016/S0037-0738(97)00061-4. [75] Sparks R. S. J.,R.T. Bonnecaze,H.E. Huppert,J.R. Lister,M.A. Hallworth,H. Mader, and J. Phillips.1993. Sediment-laden gravity currents with reversing buoyancy.Earth and Planetary Science Letters 114: 243-257. [76] Turner J. S.,H. E. Huppert.1992. Sedimentation and mixing at the top of a suspended particles. Proceedings of the 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia, December, pp. 747-750. [77] Van Wagoner, J.C., H.W. Posamentier, R.M. Mitchum, P.R. Vail, J.F. Sarg, T.S. Loutit, and J. Hardenbol. 1988. An overview of sequence stratigraphy and key definitions. In: Sea Level Changes-An Integrated Approach, ed. C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, C.A. Ross, and J.C. Van Wagoner, Vol. 42, 39-45. SEPM Special Publication. [78] Violante C.2009. Rocky coast: Geological constraints for hazard assessment. In: Geohazard in Rocky Coastal Areas. The Geological Society of London, Special Publications, ed. C. Violante, vol. 322, 1-31. [79] Violante C., G.C. Braca, E. Esposito,G. Tranfaglia.2016. The 9 September 2010 torrential rain and flash flood in the Dragone catchment, Atrani, Amalfi Coast (southern Italy).Natural Hazards and Earth System Sciences 16: 333-348. DOI: 10.5194/nhess-16-333-2016. [80] Wang H.,Z. Yang,G. Li and W. Jiang.2006. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion.Journal of Coastal Research 22(4): 906-918. [81] Westman P.,S. Wastegård K. Schoning,B. Gustafsson, and A. Omstedt.1999. Salinity change in the Baltic Sea during the last 8,500 years: Evidence, causes and models. Swedish Nuclear Fuel and Waste Management Company, Technical Report TR‐‐ 99‐38: 1‐47. [82] Wilcox A.C.,C. Escauriaza,R. Agredano,E. Mignot,V. Zuazo,S. Otárola,L. Castro,J. Gironás,R. Cienfuegos, and L. Mao.2016. An integrated analysis of the March 2015 Atacama floods.Geophysical Research Letters 43: 8035-8043. [83] Wilson R.,J. Schieber.2014. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York, USA: Implications for mud transport in epicontinental seas.Journal of Sedimentary Research 84: 866-874. [84] Wilson, R. and J. Schieber.2017. Association between wave- and current-aided hyperpycnites and flooding surfaces in shelfal mudstones: an integrated sedimentologic, sequence stratigraphic, and geochemical approach.Journal of Sedimentary Research 87: 1143-1155. [85] Winsemann J.,J. Lang,U. Polom,M. Loewer,J. Igel,L. Pollock, and C. Brandes.2018. Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture.Boreas 47: 973-1002. [86] Yang, Z.S. and J.P. Liu.2007. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea.Marine Geology 240: 169-176. [87] Zavala C.,L. Blanco Valiente, and Y. Vallez. 2008. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference “Sediment Transfer from Shelf to Deepwater — Revisiting the Delivery Mechanisms”. March 3-7, 2008—Ushuaia-Patagonia, Argentina . AAPG Search and Discovery Article #50077, Posted May 15, 2008. (L. Blanco Valiente, and Y. Vallez. 2008. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference “Sediment Transfer from Shelf to Deepwater — Revisiting the Delivery Mechanisms”. March 3-7, 2008—Ushuaia-Patagonia, Argentina . AAPG Search and Discovery Article #50077, Posted May 15, 2008. (http://www.searchanddiscovery.com/pdfz/documents/2008/jw0807zavala/images/jw0807zavala.pdf.html. [88] Zavala C.,M. Arcuri, H. Gamero, C. Contreras, and M. Di Meglio. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: Sediment Transfer from Shelf to Deep Water — Revisiting the Delivery System, ed. R.M. Slatt and C. Zavala. AAPG Studies in Geology, vol. 61, 31-51. [89] Zavala C.,M. Arcuri, and L. Blanco Valiente.2012. Plant remains in recent deposits of the Orinoco fan: a direct evidence of hyperpycnal discharges of the Orinoco River. GSTT 5th Geological Conference 2012. Hilton Hotel & Conference Centre September 3-5 2012, Trinidad & Tobago [90] Zavala C., andM. Arcuri. 2016. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology 337: 36-54. https://doi.org/10.1016/j.sedgeo.2016.03.008. [91] Zavala C.,M. Arcuri,M. Di Meglio,A. Zorzano,V.H. Goitia Antezana, and L.R. Arnez Espinosa.2016. Prodelta hyperpycnites: Facies, processes and reservoir significance. Examples from the Lower Cretaceous of Russia. International Conference and Exhibition, Barcelona, Spain, 3-6 April 2016: pp. 73-73. https://doi.org/10.1190/ice2016-6356637.1 [92] Zavala C.,S.X. Pan.2018. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics.Lithologic Reservoirs 30(1): 1-27. [93] Zavala C.,J. Ponce,D. Drittanti,M. Arcuri,H. Freije, and M. Asensio.2006. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso formation (cretaceous) of west-Central Argentina.Journal of Sedimentary Research 76: 41-59. [94] Zavala C.,X.B. Li, H.Q. Liu, M. Arcuri, M. Di Meglio, A. Zorzano, G. Otharán, B. Hao, and Y. Wang. In press. Lacustrine sequence stratigraphy: new insights from the study of the Yanchang Formation (Middle-Late Triassic), Ordos Basin, China. In: The Ordos Basin, ed. R. C. Yang, and A.J. Van Loon. Elsevier. [95] Zavala C.2020. Hyperpycnal flows and deposits.Journal of Palaeogeography(2020) 9(1): 1-21. DOI: https://doi.org/10.1186/s42501-020-00065-x