Foraminiferal micro-buildups (“reefs”) in the Wuchiapingian basin facies of the basal Zechstein carbonates in western Poland
Tadeusz Marek Peryta,*, Danuta Perytb
aPolish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland; bInstitute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Abstract Encrusting foraminifers locally can play an essential reef-forming role such as in the Carnian fossiliferous Hallstatt Limestones of Austria where a dense succession of hardgrounds occurs with numerous small buildups (up to 2 cm high) composed of sessile foraminifers. Similar foraminiferal micro-buildups occur in a 10-cm-thick bed in the basinal facies in the basal Zechstein (Upper Permian) strata in the Radlin 60 borehole, in western Poland. Foraminiferal micro-buildups of presumably columnar habit account for up to a half of the volume. The growth of columns was interrupted by hiatal surfaces, although usually the growth of columns was restored afterwards. In the upper part of the bed with foraminiferal micro-buildups, the foraminiferal encrustations become visibly less abundant, and in most cases, they have a shape of less regular masses. The bed with foraminiferal micro-buildups abounds in closely spaced discontinuity (hiatal) surfaces, occasionally encrusted by foraminifers. Tubular foraminifers in the bed with foraminiferal micro-buildups are accompanied by various encrusting organisms, possibly microbes; they are grouped under the name Palaeonubecularia. In the intercolumnar spaces, common Midiella sp. occur. During deposition, the conditions were mostly suboxic, and various types of ferruginous morphs, common in the lower part of the bed, suggest that dysoxic-anoxic interfaces produced various microaerophilic environments for iron-bacteria. The environmental conditions during the deposition of the upper part of the bed were very similar to those characterizing the starved basin environment in which the bioclastic-peloidal and oncoidal sediments in the Zechstein Limestone have been formed. In turn, the lower part of the bed registers the transition from normal (= not starved) marine conditions, with a clear chemocline, to the starved basin conditions. The deposition of the bed was coeval with the Kupferschiefer deposition based on the correlation of δ13C curves, which implies that the previous stratigraphical concept of basal Zechstein strata has to be re-evaluated.
Corresponding Authors:
*E-mail addresses:tadeusz.peryt@pgi.gov.pl (Tadeusz Marek Peryt)
Cite this article:
. Foraminiferal micro-buildups (“reefs”) in the Wuchiapingian basin facies of the basal Zechstein carbonates in western Poland[J]. , 2021, 10(4): 463-481.
. Foraminiferal micro-buildups (“reefs”) in the Wuchiapingian basin facies of the basal Zechstein carbonates in western Poland[J]. Journal of Palaeogeography, 2021, 10(4): 463-481.
[1] Adams C.G.,1965. The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation.Journal of the Geological Society, 121, 283-338. [2] Alexandrowicz S.W., Jarosz J., 1971. Palaeoecology of the Zechstein Lingula sandstones from Lubin (west Poland).Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences de la Terre, 19, 183-191. [3] Becker F.,2002. Zechsteinkalk und Unterer Werra-Anhydrit (Zechstein 1) in Hessen: Fazies, Sequenzstratigraphie und Diagenese.Geologische Abhandlungen Hessen, 109, 1-231. [4] Bosellini F.R., Papazzoni C.A., 2003. Palaeoecological sig-nificance of coral-encrusting foraminiferan associations:A case-study from the Upper Eocene of northern Italy.Acta Palaeontologica Polonica, 48, 279-292. [5] Brauns C.M., Pätzold T., Haack U., 2003. A Re‒Os Study Bearing on the Age of the Kupferschiefer at Sangerhau-sen (Germany). International Congress on Carboniferous and Permian Stratigraphy, Utrecht, p. 66. Abstracts. [6] Brongersma-Sanders M.,1971. Origin of major cyclicity of evaporites and bituminous rocks: An actualistic model.Marine Geology, 11, 123-144. [7] Čatalov G.A.,1983. Triassic Oncoids from Central Balkan.ides (Bulgaria). In: Peryt, T.M. (Ed.), Coated Grains. Springer, Berlin, pp. 398-408. [8] Catuneanu O., Abreu V., Bhattacharya J.P., Blum M.D., Dalrymple R.W., Eriksson P.G., Fielding C.R., Fisher W.L., Galloway W.E., Gibling M.R., Giles K.A.,Holbrook L.M., Jordan R., St C.G., Kendall C.,Macurda B., Martinsen O.J., Miall A.D., Neal J.E., Nummedal D., Pomar L., Posamentier H.W., Pratt B.R., Sarg J.F., Shanley K.W., Steel R.J., Strasser A., Tucker M.E., Winker C., 2009. Towards the standardization of sequence stratigraphy.Earth-Science Reviews, 92, 1-33. [9] Chłódek K.,2006. Petrographical Study of the Radlin-60 Borehole. POGC Archive No. DSL-4187-5/06, Zielona Góra (in Polish). [10] Cózar P., Rodríguez S., Somerville I.D., 2003. Large multi-biotic cyanoliths from relatively deep-water facies in the early Serpukhovian of SW Spain.Facies, 49, 31-48. [11] Dunham R.J.,1962. Classification of carbonate rocks ac-cording to depositional texture.American Association of Petroleum Geologists Memoir, 1, 108-121. [12] Dyjaczyński K., Peryt T.M., 2014. Controls on basal Zech-stein (Wuchiapingian) evaporite deposition in SW Poland.Geological Quarterly, 58, 475-492. [13] Dyjaczynski K., Górski M., Mamczur S., Peryt T.M., 2001. Reefs in the basinal facies of the Zechstein limestone (Upper Permian) of western Poland.Journal of Petroleum Geology, 24, 265-285. [14] Flügel E.,2010. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Springer, Berlin. [15] Fluteau F., Besse J., Ramstein G., 2001. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range alti-tude?Palaeogeography, Palaeoclimatology, Palaeoecol-ogy, 167, 39-71. [16] Föllmi K.B.,2016. Sedimentary condensation.Earth-Sci-ence Reviews, 152, 143-180. [17] Friebe J.G.,1994. Serpulid-bryozoan-foraminiferal bio-stromes controlled by temperate climate and reduced salinity: Middle Miocene of the Styrian Basin, Austria.Facies, 30, 51-62. [18] Füchtbauer H.,1968. Carbonate sedimentation and subsi-dence in the Zechstein Basin (Northern Germany). In: Müller, G., Friedman, G.M. (Eds.), Recent Developments in Carbonate Sedimentology in Central Europe. Springer, Heidelberg, pp. 196-204. [19] Gaillot J., Vachard D., 2007. The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: Biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeograph-ical implications.Coloquios de Paleontología, 57, 37-223. [20] Gast R.E., Dusar M., Breitkreuz C., Gaupp R., Schneider J.W., Stemmerik L., Geluk M.C., Geisler M., Kiersnowski H., Glennie K.W., Kabel S., Jones N.S., 2010. In: Doornenbal, J.C., Stevenson, A.G. (Eds.), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v, Houten, pp. 101-121. [21] Gillet S., Derville H., 1931. Nouveau gisement d'un récif a Nubecularia a Cricov pres de Chisinau (Bessarabie) Bulletin de la Société Géologique de France, Series,5(1), 721-738. [22] Ginsburg R.N., Schroeder J.H., 1973. Growth and subma-rine fossilization of algal cup reefs, Bermuda.Sedimen-tology, 20, 575-614. [23] Glennie K.W., Buller A.T., 1983. The Permian Weissliegend of NW Europe: The partial deformation of aeolian dune sands caused by the Zechstein transgression.Sedimen-tary Geology, 35, 43-81. [24] Gradziński M., Tyszka J., Uchman A., Jach R., 2004. Large microbial-foraminiferal oncoids from condensed LowereMiddle Jurassic deposits: A case study from the Tatra Mountains, Poland.Palaeogeography, Palaeoclima-tology, Palaeoecology, 213, 133-151. [25] Grammer G.M., Ginsburg R.N., Swart P.K., McNeill D.F., Jull A.J.T., Prezbindowski D.R., 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize.Jour-nal of Sedimentary Petrology, 63, 983-989. [26] Gregosiewicz Z., Protas A., 1997. Facies, diagenesis and reservoir properties of the Rotliegend sandstone of the Radlin field region.Nafta-Gaz, 9, 375-387 (in Polish). [27] Henbest L.G.,1963. Biology, Mineralogy, and Diagenesis of Some Typical Paleozoic Sedentary Foraminifera and Algal-Foraminiferal Colonies, vol. 6. Cushman Founda-tion for Foraminiferal Research Special Publications, pp. 1-44. [28] Hirst D.M., Dunham K.C., 1963. Chemistry and petrography of the marl slate of S.E. Durham, England.Economic Ge-ology, 58, 912-940. [29] Hornung T., Spatzenegger A., Joachimski M.M., 2007. Multi-stratigraphy of condensed ammonoid beds of the Rappolt-stein (Berchtesgaden, southern Germany): Unravelling palaeoenvironmental conditions on‘Hallstatt deep swells’ during the Reingraben Event (Late Lower Carnian). Facies, 53, 267-292. [30] Hudson J.D.,1977. Stable isotopes and limestone lithifica-tion.Journal of the Geological Society, 133, 637-660. [31] Jarosz J., Zaleska-Kuczmierczyk M., 1980. A new section of the deposit series from the "Rudna" copper mine.Prze-glad Geologiczny, 28, 113-114 (in Polish). [32] Jasionowski M., Peryt T.M., Durakiewicz T., 2014. Poly-phase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-ridge, Fore-Sudetic Monocline, SW Poland).Geological Quar-terly, 58, 493-510. [33] Kabanov P.,2003. The Upper Moscovian and Basal Kasimo-vian (Pennsylvanian) of Central European Russia: Facies, subaerial exposures and depositional model.Facies, 49, 243-270. [34] Kiersnowski H.,2013. Late Permian aeolian sand seas from the Polish Upper Rotliegend Basin in the context of palae-oclimatic periodicity.Geological Society Special Publica-tions, 376, 431-456. [35] Kiersnowski H., Paul J., Peryt T.M., Smith D.B., 1995. Facies, paleogeography, and sedimentary history of the southern Permian basin in Europe. In: Scholle, P.A., Peryt, T.M., Ulmer-Scholle, D.S. (Eds.), The Permian of Northern Pangea, 2. Sedimentary Basins and Economic Resources. Springer, Berlin, pp. 119-136. [36] Kiersnowski H., Peryt T.M., Buniak A., Mikołajewski Z., 2010. From the intra-desert ridges to the marine carbon-ate island chain: Middle to Late Permian (upper Rotliegendelower Zechstein) of the WolsztynePogorzela high, west Poland.Geological Journal, 44, 319-335. [37] Kotarba M.J., Peryt T.M., Kosakowski P., Wiecław D., 2006. Organic geochemistry, depositional history aÎnd hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in southewest Poland.Ma-rine and Petroleum Geology, 23, 371-386. [38] Kwolek K., Mikołajewski Z., 2007. New stratigraphic scheme for Zechstein rocks in the Pogorzela High (Foresu-detic Monocline) and its significance for hydrocarbon exploration.Przeglad Geologiczny, 55, 1037-1047 (in Polish with English summary). [39] Magaritz M., Turner P., Käding K.C., 1981. Carbon isotopic change at the base of the Upper Permian Zechstein sequence.Geological Journal, 16, 243-254. [40] Mamet B., Pre_ at A., 2006. Iron-bacterial mediation in Phanerozoic red limestones: State of the art.Sedimen-tary Geology, 185, 147-157. [41] Mazzullo S.J., Cys J.M., 1977. Submarine cements in Permian boundstones and reef-associated rocks, Guada-lupe Mountains, west Texas and southeastern New Mexico.SEPM Permian Basin Section Publication, 77(16), 151-200. [42] Mazzullo S.J., Cys J.M., 1979. Marine aragonite sea-floor growths and cements in Permian phylloid algal mound, Sacramento Mountains, New Mexico.Journal of Sedimen-tary Petrology, 49, 917-936. [43] Oszczepalski S.,1989. Kupferschiefer in Southwestern Poland: Sedimentary Environments, Metal Zoning, and Ore Controls. Geological Association of Canada. Special Paper 36: 571-600. [44] Oszczepalski S., Chmielewski A., Mikulski S.Z., 2016. Con-trols on the distribution of rare earth elements in the Kupferschiefer series of SW Poland.Geological Quarterly, 60, 811-826. [45] Paul J.,1982. Zur Rand-und Schwellen-Fazies des Kupfer-schiefers.Zeitschrift der deutschen geologischen Gesell-schaft, 133, 571-605. [46] Peryt D., Peryt T.M., Raczyński P., Chłódek K., 2012. Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland.Geological Quarterly, 56, 529-546. [47] Peryt D., Peryt T.M., Hałas S., Raczyński P., 2016. Microf-acies, foraminifers and carbon and oxygen isotopes in a basinal section of the Zechstein Limestone (Wuchiapin-gian): Bonikowo 2 borehole, western Poland.Geological Quarterly, 60, 827-839. [48] Peryt T.M.,1976. Thuringian (Upper Permian) marine ingression in the area of Fore-Sudetic monocline (Poland).Annales de la Societe Geologique de Pologne, 46, 455-465 (in Polish with English summary). [49] Peryt T.M.,1977. Environmental significance of Foraminiferal-Algal Oncolites. In: Flügel, E. (Ed.), Fossil Algae. Springer, Berlin, pp. 51-56. [50] Peryt T.M.,1981a. Phanerozoic oncoids d an overview.Facies, 4, 197-214. [51] Peryt T.M.,1981b. Former aragonitic submarine hemisphe-roids associated with vadose deposits, Zechstein Lime-stone (Upper Permian), Fore-Sudetic area, western Poland.Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1981(9), 559-570. [52] Peryt T.M.,1984. Sedimentation and early diagenesis of the Zechstein limestone in western Poland.Prace Instytutu Geologicznego, 109, 1-70 (in Polish with English summary). [53] Peryt T.M.,1989. Basal Zechstein in Southwestern Poland: Sedimentation, Diagenesis, and Gas Accumulations. Geological Association of Canada. Special Paper 36: 601-625. [54] Peryt T.M., Peryt D., 1975. Association of sessile tubular foraminifera and schizophytic algae.Geological Maga-zine, 112, 612-614. [55] Peryt T.M., Peryt D., 1977. Zechstein foraminifera from the Fore-Sudetic monocline area (West Poland) and their paleoecology.Annales de la Societe Geologique de Pologne, 47, 301-326 (in Polish with English summary). [56] Peryt T.M., Peryt D., 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in northern Poland.Geological Quarterly, 56, 187-198. [57] Peryt T.M., Piatkowski T.S., 1977. Stromatolites from the ZechsteinÎ Limestone (Upper Permian) of Poland. In: Flügel, E. (Ed.), Fossil Algae. Springer, Berlin, pp. 124-135. [58] Peryt T.M., Waz_ ny H., 1980. Microfacies and geochemical development of the basin facies of the Zechstein Lime-stone (Ca1) in western Poland.Contributions to Sedimen-tology, 9, 279-306. [59] Peryt T.M., Jasionowski M., Raczyński P., Chłódek K., 2020. Demise of the Jabłonna Reef (Zechstein Limestone) and the onset of gypsum deposition (Wuchiapingian, west Poland): Carbonate-to-evaporite transition in a saline giant.Journal of Palaeogeography, 9(1), 18. [60] Peryt T.M., Geluk M.C., Mathiesen A., Paul J., Smith K., 2010. Zechstein. In: Doornenbal, J.C., Stevenson, A.G. (Eds.), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v, Houten, pp. 123-147. [61] Peryt T.M., Raczyński P., Peryt D., Chłódek K., 2012. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland.Geological Journal, 46, 537-552. [62] Peryt T.M., Hałas S., Peryt D., 2015. Carbon and oxygen isotopic composition and foraminifera of condensed basal Zechstein (Upper Permian) strata in western Poland: Environmental and stratigraphic implications.Geological Journal, 50, 446-464. [63] Plaziat J.C., Perrin C., 1992. Multikilometer-sized reefs built by Foraminifera (Solenomeris) from the Early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs. Palaeogeogra-phy, Palaeoclimatology, Palaeoecology, 96, 195-231. [64] Rasser M., Piller W.E., 1997. Depth distribution of calcareous encrusting associations in the Northern Red Sea (Safaga, Egypt) and their geological implications.Proceedings of the 8th International Coral Reef Symposium, 1, 743-748. [65] Richter-Bernburg G.,1955. Über salinare Sedimentation.Zeitschrift der deutschen geologischen Gesellschaft, 105, 593-645. [66] Riding R.,1983. Cyanoliths (Cyanoids): Oncoids Formed by Calcified Cyanophytes. In: Peryt, T.M. (Ed.), Coated Grains. Springer, Berlin, pp. 276-283. [67] Rodríguez-Martínez M., Heim C., Simon K., Zilla T., Reitner J., 2011. Tolypammina gregaria Wendt 1969-Fru-texites assemblage and ferromanganese crusts: A coupled nutrient-metal interplay in the Carnian sedimen-tary condensed record of Hallstatt Facies (Austria). Lec-ture Notes in Earth Sciences, 131, 409-434. [68] Rouchy J.M., Taberner C., Peryt T.M., 2001. Sedimentary and diagenetic transitions between carbonates and evap-orites.Sedimentary Geology, 140, 1-8. [69] Scholle P.A.,1995. Carbon and sulphur isotope stratigraphy of the Permian and adjacent intervals. In: Scholle, P.A., Peryt, T.M., Ulmer-Scholle, D.S. (Eds.), The Permian of Northern Pangea, vol. 1. Springer, Berlin, pp. 133-149. [70] Schönfeld J.,2002. Recent benthic foraminiferal assem- 1)blages in deep high energy environments from the Gulf of Cadiz.Marine Micropaleontology, 44, 141-162. [71] Schroeder J.H.,1972. Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs.Geo-logische Rundschau, 61, 708-730. [72] Shinn E.A.,1969. Submarine lithification of Holocene car-bonate sediments in the Persian Gulf.Sedimentology, 12, 109-144. [73] Smith D.B.,1980. The evolution of the English Zechstein basin.Contributions to Sedimentology, 9, 7-34. [74] Smith D.B.,1986. The Trow Point Bed e a deposit of Upper Permian marine oncoids, peloids and columnar stromatolites in the Zechstein of NE England.Geological Society Special Publications, 22, 113-125. [75] Strasser A.,2015. Hiatuses and condensation: An estimation of time lost on a shallow carbonate platform.The Depo-sitional Record, 1(2), 91-117. [76] Szurlies M.,2020. Magnetostratigraphy of the Zechstein: Implications for the Late Permian geological time-scale.Schriftenreihe der Deutschen Gesellschaft für Geowis-senschaften, 89, 129-143. [77] Taylor J.C.M., Colter, V.S., 1975. Zechstein of the English sector of the Southern North Sea Basin. In: Woodland, A.W. (Ed.), Petroleum and the Continental Shelf of North-west Europe, vol. 1. Applied Science Pub-lishers, Barking, pp. 249-263. [78] Tucker, M.E., Hollingworth, N.T.J., 1986. The Upper Permian (Zechstein) Tunstall Reef of North East England: Palaeoe-cology and early diagenesis. In: Schroeder, J.H., Purser, B.H. (Eds.), Reef Diagenesis. Springer, Berlin Hei-delberg, pp. 270e290. [79] Tusin,ski, S., 1985. Redeposited sediments at the base of the Kupferschiefer in the Rudna mine (Lubin-Głogo,w copper region).Przeglad Geologiczny, 33, 236-239 (in Polish). [80] Vachard D., PilleÎ L., Gaillot J., 2010. Palaeozoic Fora-minifera: Systematics, palaeoecology and responses to the global changes. Les foraminiféres pale,ozoïques: Syste,matique, pale,oe,cologie et 2)re,ponses aux changements globaux.Revue de Micro-pale,ontologie, 53, 209-254. [81] Varrone D., d'Atri A., 2007. Acervulinid macroid and rhodo-lith facies in the Eocene nummulitic limestone of the Dauphinois domain (maritime Alps, Liguria, Italy).Swiss Journal of Geosciences, 100, 503-515. [82] Wendt, J., 1969. Foraminiferen-‘Riffé im karnischen Hallstätter Kalk des Feuerkogels (Steiermark, Österreich). Paläontologische Zeitschrift, 43, 177-193. [83] Wright V.P.,1983. Morphogenesis of oncoids in the Lower Carboniferous Llanelly Formation of South Wales. In: Peryt, T.M. (Ed.), Coated Grains. Springer, Berlin, pp. 424-434. [84] Wyźykowski, J., 1964. Rotliegendes formations in the Sudetic foreland. Przeglad Geologiczny, 12, 319-323 (in Polish with English summÎary). [85] Zatoń M., Kremer B., Marynowski L., Wilson M.A., Krawczyn,ski W., 2012. Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland.Facies, 58, 57-77.