New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications
Lu-Liang Huanga,b, Jian-Hua Jina,b,*, Cheng Quanc,*, Alexei A. Oskolskid,e
aState Key Laboratory of Biocontrol, and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, China; bState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, Jiangsu Province, China; cSchool of Earth Science and Resources, Chang'an University, Xi'an 710054, Shaanxi Province, China; dDepartment of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa; eKomarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, St. Petersburg 197376, Russia
Abstract Mummified fossil woods of Liquidambar from the Miocene of the Guiping Basin of Guangxi and the upper Pleistocene sediments of the Maoming Basin of Guangdong, South China are recognized as the new species Liquidambar guipingensis sp. nov. and the extant species Liquidambar formosana Hance, respectively. The fossil wood of L. guipingensis shows the greatest structural affinity to the extant species L. excelsa (Noronha) Oken, which is widespread from SW China and NE India (Assam) through Myanmar and Malaysia to Indonesia. The finding of L. guipingensis may be considered as evidence for the early diversification of this lineage that occurred at least partly outside the modern range of this extant species. The fossil wood of L. formosana from the Maoming Basin represents the only Pleistocene megafossil of Altingiaceae known to date, and provides confirmation for its presence in the interglacial vegetation of South China prior the Last Glacial Maximum.
. New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications[J]. , 2021, 10(4): 482-493.
. New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications[J]. Journal of Palaeogeography, 2021, 10(4): 482-493.
[1] Agarwal A.,1991. Occurrence ofAltingia and Bauhinia in the Neyveli Lignite (Miocene), India. Journal of the In-dian Botanical Society, 70, 119-121. [2] Akkemik Ü., Arslan M., Poole I., Tosun S., Köse N.,Kõlõç N.K., Aydõn A.,2016. Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Review of Palaeobotany and Palynology, 235, 31-50. https://doi.org/10.1016/j.revpalbo.2016.09.012. [3] APG (The Angiosperm Phylogeny Group), 2003. An update of the Angiosperm Phylogeny Group classification for the or-ders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141(4), 399-436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x. [4] Behera M.D., Kushwaha S.P.S., 2007. An analysis of altitu-dinal behavior of tree species in Subansiri district, Eastern Himalaya. Biodiversity & Conservation, 16(6), 1851-1865. https://doi.org/10.1007/s10531-006-9083-0. [5] Bobrov A.V., Roslov M.S., Romanov M.S., 2020. Phyloge-netic biogeography of Hamamelidaceae s.l. based on mo-lecular data.Vestnik of Saint Petersburg University. Earth Sciences, 65(2), 224-244 (in Russian). [6] Brown R.W.,1933. A Cretaceous sweet gum.Botanical Gazette, 94(3), 611-615. [7] Chandler, M.E.J., 1961. The Lower Tertiary Floras of South-ern England: Palaeocene Floras. London Clay Flora (Sup-plement 1). British Museum (Natural History), London. [8] Chaney R.W., Axelrod D.I., 1959. Miocene Floras of the Columbia Plateau, vol. 134. Carnegie Institution of Wash-ington Publication, pp. 1-237. [9] Cheng J.Q., Yang J.J., Liu P., 1992. Chinese Woods. Chi-nese Forestry Publishing House, Beijing (in Chinese). [10] Cheng Y.M., Yi T.M., Li C.S.,2013. Identification of the early early Pliocene fossil woods from Ninghai in Zhejiang Province and its palaeoenvironmental implications. Jour-nal of Palaeogeography (Chinese Edition), 15(1), 105-112. https://doi.org/10.7605/gdlxb.2013.01.010 (in Chinese with English abstract). [11] Endo S.,1968. The flora from the Eocene Woodwardia For-mation, Ishikari coalfield, Hokkaido, Japan.Bulletin of the National Science Museum, Tokyo, 11, 411-449. [12] Felix J.,1884. Die Holzopale Ungarns in palaeophytolo-gischer Hinsicht. Mittheilungen aus dem Jahrbuche der Kgl.ungarischen Geologischen Anstalt, 7, 1-43. [13] Fritts H.C.,1976. Tree Rings and Climate. Academic Press, London. [14] Gottwald H.,1992. Hölzer aus marinen Sanden des Oberen Eozän von Helmstedt (Niedersachsen).Palaeontograph-ica Abtellung B Paläeophytologie, 225, 27-103. [15] He C.X., Tao J.R., 1997. A study on the Eocene flora in Yilan county, Heilongjiang, China.Acta Phytotaxonomica Sinica, 35(3), 249-256 (in Chinese with English abstract). [16] Hoxie L.R.,1965. The Sparta flora from Baker country.Ore-gon: Northwest Science, 39(1), 26-35. [17] Huang L.L., Jin J.H., Oskolski A.A., 2021. Mummified fos-sil of Keteleeria from the late Pleistocene of Maoming Basin, South China, and its phytogeographical and paleo-ecological implications. Journal of Systematics and Evo-lution, 59(1), 198-215. https://doi.org/10.1111/jse.12540. [18] Huzioka K.,1974. The Miocene Daibo flora from the western end of Honshu, Japan.Mining College, Akita University, 5(2), 85-108. [19] Ickert-Bond S.M., Wen J., 2006. Phylogeny and biogeog-raphy of Altingiaceae: Evidence from combined analysis of five non-coding chloroplast regions. Molecular Phylo-genetics and Evolution, 39(2), 512-528. https://doi.org/10.1016/j.ympev.2005.12.003. [20] Ickert-Bond S.M., Wen J., 2013. A taxonomic synopsis of Altingiaceae with nine new combinations.PhytoKeys, 31, 21-61. https://doi.org/10.3897/phytokeys.31.6251. IAWA Committee, 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin New Series, 10(3), 219-332. [21] InsideWood, 2004-onwards. Published on the Internet. Avail-able from: 2004-onwards. Published on the Internet. Avail-able from: . Published on the Internet. Avail-able from: 2004-onwards. Published on the Internet. Avail-able from: http://insidewood.lib.ncsu.edu/search. [22] Judd W.S., Campbell C.S., Kellogg E.A., Stevens P.F., Donoghue M.J., 2002. Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Inc., Sunderland, MA. [23] Kohlman-Adamska,A., Ziembin'ska-Tworzydło, M., Zastawniak, E., 2004. In situ pollen in some flowers and inflorescences in the Late Miocene flora of So'snica (SW Poland). Review of Palaeobotany and Palynology, 132(3), 261-280. https://doi.org/10.1016/j.revpalbo.2004.07.005. [24] Kovar-Eder J., Kva》cek Z., Ströbitzer-Hermann M., 2004. The Miocene flora of Parschlug (Styria, Austria)-revision and synthesis. Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie.Anthropologie und Prähistorie, 105, 45-159. [25] Kramer K.,1974. Die tertiären Hölzer Südost-Asiens (unter Ausschluß der Dipterocarpaceae) 2. Teil.Palaeontog-raphica Abteilung B, 145, 1-150. [26] Lin J.X.,1993. Notes on the improvements of wood-sectioning techniques.Chinese Bulletin of Botany, 10, 61-64 (in Chinese). [27] MacGinitie H.D.,1941. A Middle Eocene Flora from the Central Sierra Nevada, vol. 584. Carnegie Institute of Washington Publication, pp. 1-78. [28] Mai D.H., Walther H., 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig, DDR).Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 28, 1-200. [29] Manchester S.R., Chen Z.D., Geng B.Y., Tao J.R., 2005. Middle Eocene flora of Huadian, Jilin Province, north-eastern China.Acta Palaeobotanica, 45(1), 3-26. [30] Maslova N.P.,1995. Liquidambar L. from the Cenozoic of eastern Asia. Paleontological Journal, 29(1A), 145-158. Maslova, N.P., 2003. Extinct and extant Platanaceae and Hamamelidaceae: Morphology, systematics, and phylog-eny. Paleontological Journal, 37(Suppl. 5), 467-589. [31] Maslova N.P., Kodrul T.M., Song Y., Volkova L.D., Jin J.H., 2015. Liquidambar maomingensis sp. nov.(Altingiaceae) from the late Eocene of South China. American Journal of Botany, 102(8), 1356-1370. https://doi.org/10.3732/ajb.1500019. [32] Maslova N.P., Kodrul T.M., Herman A.B., Tu M., Liu X.Y., Jin J.H., 2019. A new species of Liquidambar (Altingia-ceae) from the late Eocene of South China. Journal of Plant Research, 132(2), 223-236. https://doi.org/10.1007/s10265-019-01091-0. [33] Melchior R.C.,1998. Paleobotany of the Williamsburg For-mation (Paleocene) at the Santee Rediversion site Berkeley County, South Carolina. In: Sanders, A.E. (Ed.), Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, U.S.A. Transactions of the American Philosophical Soci-ety, vol. 4, pp. 49-121. [34] Meyer H.W., Manchester S.R., 1997. The Oligocene Bridge Creek Flora of the John Day Formation, Oregon, vol. 141. University of California Publications in Geological Science, pp. 1-195. [35] Oskolski A.A., Kodrul T.M., Jin J., 2012. Altingioxylon hai-nanensis sp. nov.: earliest fossil wood record of the fam-ily Altingiaceae in Eastern Asia and its implications for historical biogeography. Plant Systematics and Evolution, 298(3), 661-669. https://doi.org/10.1007/s00606-011-0575-3. [36] Palamarev E.H., Bozukov V., Uzunova K., Petkova A., Kitanov G., 2005. Catalogue of the Cenozoic plants of Bulgaria (Eocene to Pliocene).Phytologia Balcanica, 11(3), 215-364. [37] Parrish J.T., Spicer R.A., 1988. Middle Cretaceous woods from the Nanushuk Group, central North Slope, Alaska.Palaeontology, 31, 19-34. [38] Pigg K.B., Ickert-Bond S.M., Wen J., 2004. Anatomically pre-served Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. American Journal of Botany, 91(3), 499-509. https://doi.org/10.3732/ajb.91.3.499. [39] Prakash U., Barghoorn E.S., 1961. Miocene fossil woods from the Columbia basalts of Central Washington.Journal of the Arnold Arboretum, 42(2), 165-203. [40] Roy S.K., Stewart W.N., 1971. Oligocene woods from the Cypress Hills Formation in Saskatchewan, Canada.Cana-dian Journal of Botany, 49(11), 1867-1877. [41] Sakala J., Privé-Gill C., Koeniguer J.C., 1999. Silicified angiosperm wood from the Dangu locality (Ypresian of the Gisors region, Eure, France): The problem of root wood.Comptes. Rendus de l’Academie des Sciences. Paris, Série II, fascicule A, Sciences de la Terre et des Planetes/Earth and Planetary Sciences, 328, 553-557. [42] Stults D.Z., Axsmith B.J.,2011. Filling the gaps in the Neogene plant fossil record of eastern North America: New data from the Pliocene of Alabama. Review of Palae-obotany and Palynology, 167(1), 1-9. https://doi.org/10.1016/j.revpalbo.2011.07.004. [43] Suzuki M., Hiraya C., 1989. Fossil wood flora from the pum-ice tuff of Yanagida Formation (lower Miocene) at Mawaki, Noto Peninsula.The Annals of Science, 26, 47-75. [44] Suzuki M., Watari S., 1994. Fossil wood flora of the early Miocene Nawamata Formation of Monzen, Noto Penin-sula, central Japan. Journal of Plant Research, 107(1), 63-76. https://doi.org/10.1007/BF02344531. [45] Vink W.,1957. Hamamelidaceae. In: Van Steenis, C.G.G.J. (Ed.), Flora Malesiana, Series I, vol. 5, pp. 363-379. [46] Watari S.,1943. Studies on the fossil woods from the Ter-tiary of Japan, IV. A new silicified wood of the Ternstroe-miaceae from the Pliocene of Yokohama city.Journal of Japanese Botany, 13, 261-267. [47] WGCPC (The Writing Group of Cenozoic Plants of China), 1978. Fossil Plants of China. In: Cenozoic Plants from China, vol. 3. Science Press, Beijing (in Chinese). [48] Wheeler E.A., Dillhoff T.A., 2009. The middle Miocene wood flora of Vantage, Washington, USA.IAWA Journal, 30(Suppl. 7), 1-101. [49] Wheeler E.A., Lee S.J., Baas P., 2010. Wood anatomy of the Altingiaceae and Hamamelidaceae.IAWA Journal, 31(4), 399-423. [50] Wu W., Zhou R.C., Huang Y.L., Boufford D.E., Shi S.H., 2010. Molecular evidence for natural intergeneric hybrid-ization between Liquidambar and Altingia. Journal of Plant Research, 123(2), 231-239. https://doi.org/10.1007/s10265-009-0275-z. [51] Xiao L., Sun B.N., Li X.C., Ren W.X., Jia H., 2011. Anatomical variations of living and fossil Liquidambar leaves: A proxy for paleoenvironmental reconstruction. Science China Earth Sciences, 54(4), 493-508. https://doi.org/10.1007/s11430-010-4135-4. [52] Yatsenko-Khmelevsky A.A.,1954. Caucasian Woods, vol. 1. Academy of Sciences of the Armenian Soviet Socialist Re-public, Yerevan (in Russian). [53] Zhang Z.Y., Zhang H.T., Endress P.K., 2003. Hamamelida-ceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 9. Science Press, Beijing, pp. 18-42. [54] Zhao Z.R.,1988. Stratigraphy of the Miocene in Guiping, Guangxi.Geology of Guangxi (1), 43-47 (in Chinese with English abstract). [55] Zheng Z., Lei Z.Q., 1999. A 400,000 year record of vegeta-tional and climatic changes from a volcanic basin, Leiz-hou Peninsula, southern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 145(4), 339-362. https://doi.org/10.1016/S0031-0182(98)00107-2. [56] Zhilin S.G.,1989. History of the development of the temperate forest flora in Kazakhstan, U.S.S.R. from the Oligocene to the early Miocene. The Botanical Review, 55(4), 205-330. https://doi.org/10.1007/BF02858522. [57] Zhou Z.K., Crepet W.L., Nixon K.C., 2001. The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescences and fruits of Altingioideae. American Journal of Botany, 88(5), 753-766. https://doi.org/10.2307/2657028.