[1] Aguirre-Urreta,B., Schmitz, M., Lescano, M., Tunik, M., Rawson, P.F., Concheyro, A., Buhler, M., Ramos, V.A., 2017. A high precision U-Pb radioisotopic age for the Agrio Formation, Neuquén Basin, Argentina: implications for the chronology of the Hauterivian Stage. Cretaceous Research, 75, 193-204. https://doi.org/10.1016/j.cretres.2017.03.027.
[2] Aguirre-Urreta,B., Martinez, M., Schmitz, M., Lescano, M., Omarini, J., Tunik, M., Kuhnert, H., Concheyro, A., Rawson, P.F., Ramos, V.A., Reboulet, S., Noclin, N., Frederichs, T., Nickl, A.L., Pälike, H., 2019. Interhemi-spheric radio-astrochronological calibration of the time scales from the Andean and the Tethyan areas in the Valan-ginianeHauterivian (Early Cretaceous). Gondwana Research, 70, 104-132. https://doi.org/10.1016/j.gr.2019.01.006.
[3] Aguirre-Urreta M.B., Rawson P.F., 1997. The ammonite sequence in the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Geological Magazine, 134(4), 449-458. https://doi.org/10.1017/S0016756897007206.
[4] Allen J.R.L.,1984. Parallel lamination developed from upper-stage plane beds: A model based on the larger coherent structures of the turbulent boundary layer. Sedimentary Geology, 39(3-4), 227-242. https://doi.org/10.1016/0037-0738(84)90052-6.
[5] Allen P.A., Pound C.J., 1985. Storm sedimentation. Journal of the Geological Society, 142(2), 411-412. https://doi.org/10.1144/gsjgs.142.2.0411.
[6] Arnott R.W.C., Hand B.M., 1989. Bedforms, primary struc-tures and grain fabric in the presence of suspended sedi-ment rain. Journal of Sedimentary Petrology, 59(6), 1062-1069. https://doi.org/10.1306/212F90F2-2B24-11D7-8648000102C1865D.
[7] Arnott R.W., Southard J.B., 1990. Exploratory ?ow-duct experiments on combined-?ow bed configurations, and some implications for interpreting storm-event stratifica-tion. Journal of Sedimentary Petrology, 60(2), 211-219. https://doi.org/10.1306/212F9156-2B24-11D7-8648000102C1865D.
[8] Arregui C., Carbone O., Leanza H.A., 2011. Contexto tec-tosedimentario. In: Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., Vallés, J.M. (Eds.), Relatorio del XVIII Congreso Geológico Argentino. Geología y Recur-sos Naturales de la provincia de Neuquén. Asociación Geológica Argentina, pp. 29-36.
[9] Ashley G.M., Southard J.B., Boothroyd J.C., 1982. Deposi-tion of climbing-ripple beds: A ?ume simulation. Sedi-mentology, 29(1), 67-79. https://doi.org/10.1111/j.1365-3091.1982.tb01709.x.
[10] Banerjee I.,1977. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments. Journal of Sedimentary Petrology, 47(2), 771-783. https://doi.org/10.1306/212F7248-2B24-11D7-8648000102C1865D.
[11] Barron E.J.,1989. Severe storms during Earth history. GSA Bulletin, 101(5), 601-612. https://doi.org/10.1130/0016-7606(1989)101<0601:SSDEH>2.3.CO;2.
[12] Bates C.C.,1953. Rational theory of delta formation. AAPG Bulletin, 37(9), 2119-2162. https://doi.org/10.1306/5CEADD76-16BB-11D7-8645000102C1865D.
[13] Beerbower J.R.,1964. Cyclothems and cyclic depositional mechanisms in alluvial plain sedimentation.Kansas State Geological Survey, Bulletin, 169, 31-42.
[14] Bhattacharya J.P.,2006. Deltas. In: Posamentier, H.W., Walker, R.G. (Eds.), Facies Models Revisited. SEPM Special Publication, vol. 84, pp. 237-292. https://doi.org/10.2110/pec.06.84.0237.
[15] Bhattacharya J.P.,MacEachern, J.A., 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research, 79(4), 184-209. https://doi.org/10.2110/jsr.2009.026.
[16] Bhattacharya J.P., Walker R.G., 1992. Deltas. In: Walker, R.G., James, N.P. (Eds.), Facies Models: Response to Sea Level Change. Geological Association of Canada, pp. 157-177.
[17] Bromley R.G., Uchman A., Gregory M.R., Martin A.J., 2003. Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California, USA. Palaeogeography, Palaeocli-matology, Palaeoecology, 192, 157-186. https://doi.org/10.1016/S0031-0182(02)00684-3.
[18] Buatois L.A., Mángano M.G., 2011. Ichnology, Organism-Substrate Interactions in Space and Time. Cambridge University Press, Cambridge.
[19] Burgess P.M., Flint S., Johnson S., 2000. Sequence strati-graphic interpretation of turbiditic strata: An example from Jurassic strata of the Neuquén Basin, Argentina. GSA Bulletin, 112(11), 1650-1666. https://doi.org/10.1130/0016-7606(2000)112<1650:SSIOTS>2.0.CO;2.
[20] Camacho H., Busby C.J., Kneller B., 2002. A new deposi-tional model for the classical turbidite locality at San Clemente State Beach, California. AAPG Bulletin, 86(9), 1543-1560. https://doi.org/10.1306/61-EDCF6-173-11D7-8645000102C1865D.
[21] Campbell C.V.,1966. Truncated wave-ripple laminae.Jour-nal of Sedimentary Petrology, 36(3), 825-828.
[22] Carmona N.B.,2005. Icnología del Mioceno marino en la región del golfo San Jorge. PhD thesis. Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
[23] Comerio M.,2016. Estudio mineralógico de las arcillas del Miembro Agua de la Mula eFormación Agrio, en un marco estratigráfico secuencial, en el Engolfa-miento Neuquino. PhD thesis. Universidad de Buenos Aires.
[24] Comerio M., Fernández D.E., Gutiérrez C., Ballivián Justiniano C., González Estebenet M.C., Pazos P.J., 2019. Sedimentary evolution of the marine Agua de la Mula member (Agrio Formation, Lower Cretaceous) in the central Neuquén Basin: Source areas and paleogeo-graphic considerations from a distal setting. Journal of South American Earth Sciences, 96, 102259. https://doi.org/10.1016/j.jsames.2019.102259.
[25] Comerio M., Fernández D.E., Pazos P.J.,2018. Sedimento-logical and ichnological characterization of muddy storm related deposits: The upper Hauterivian ramp of the Agrio Formation in the Neuquén Basin, Argentina. Creta-ceous Research, 85, 78-94. https://doi.org/10.1016/j.cretres.2017.11.024.
[26] Dott Jr., R.H., Bourgeois J., 1982. Hummocky stratification: Significance of its variable bedding sequences. GSA Bulletin, 93(8), 663-680. https://doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2.
[27] Dott Jr., R.H., Bourgeois J., 1983. Hummocky stratification: Significance of its variable bedding sequences: Discussion and reply: Reply. Geological Society of America Bulletin, 94(10), 1249-1251. https://doi.org/10.1130/0016-7606(1983)94<1249:HSSOIV>2.0.CO;2.
[28] Dumas S., Arnott R.W.C., 2006. Origin of hummocky and swaley cross-stratification d The controlling in?uence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073-1076. https://doi.org/10.1130/G22930A.1.
[29] Dumas, S., Arnott, R.W.C., Southard, J.B., 2005. Experi-ments on oscillatory-?ow and combined-?ow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research, 75(3), 501-513. https://doi.org/10.2110/jsr.2005.039.
[30] Dunham R.J.,1962. Classification of carbonate rocks ac-cording to depositional texture. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. AAPG Memoir, vol. 1, pp. 108-121.
[31] Fernández D.E., Comerio M., Giachetti L.M., Pazos P.J., Wetzel A.,2019. Asteroid trace fossils from Lower Creta-ceous shallow-to marginal-marine deposits in Patagonia. Cretaceous Research, 93, 120-128. https://doi.org/10.1016/j.cretres.2018.09.010.
[32] Fernández D.E., Pazos P.J., 2012. Ichnology of marginal marine facies of the Agrio Formation (Lower Cretaceous, Neuquén Basin, Argentina) at its type locality.Ameghini-ana, 49(4), 505-524.
[33] Folk R.L.,1962. Spectral subdivision of limestone types. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks d A Symposium, vol. 1. AAPG Memoir, pp. 62-84.
[34] Folk R.L.,1974. Petrology of Sedimentary Rocks, 2nd ed. Hemphill Publishing Company, Austin, Texas.
[35] Franzese J.R., Spalletti L.A., 2001. Late TriassiceEarly Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences, 14(3), 257-270. https://doi.org/10.1016/S0895-9811(01)00029-3.
[36] Galloway W.E.,1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depo-sitional systems. In: Broussard, M.L. (Ed.), Deltas: Models for Exploration. Houston Geological Society, Houston, pp. 87-98.
[37] Guler M.V., Lazo D.G., Pazos P.J., Borel C.M., Ottone E.G., Tyson R.V., Cesaretti N.,Aguirre-Urreta, M.B., 2013. Palynofacies analysis and palynology of the Agua de la Mula member (Agrio Formation) in a sequence stratigraphy framework, Lower Cretaceous, Neuquén Basin, Argentina. Cretaceous Research, 41, 65-81. https://doi.org/10.1016/j.cretres.2012.10.006.
[38] Guler M.V., Paolillo M.A., Martz P.A., 2016. Early Creta-ceous dino?agellate cysts from the Neuquén and Austral basins: A review. Asociación paleontológica Argentina.Physician Executive, 16(2), 76-87.
[39] Gulisano C.A.,1981. El ciclo cuyano en el norte de Neuquén y sur de Mendoza. San Luis. In: 80 Congreso Geológico Argentino, vol. 3, pp. 573-592.
[40] Gulisano C.A., Gutiérrez Pleimling A.R., 1988. Depósitos eólicos del Miembro Avilé (Formación Agrio, Cretácico Inferior) en el norte del Neuquén, Argentina. Buenos Aires. Reproduction. Abstract Series 120-124. Proceeding.
[41] Gulisano, C.A., Gutiérrez Pleimling, A.R., 1995. Field Guild: The Jurassic of the Neuquén Basin, a) Neuquén Province. Buenos aires. Asociación Geológica Argentina, Serie D.
[42] Harms J.C.,1969. Hydraulic significance of some sand rip-ples. GSA Bulletin, 80(3), 363-396. https://doi.org/10.1130/0016-7606(1969)80[363:HSOSSR]2.0.CO;2.
[43] Harms J.C., Southard J.B., Spearing D.R., Walker R.G., 1975. Depositional environments as interpreted from pri-mary sedimentary structures and stratification se-quences. SEPM Short Course Notes, 2, 1-161. https://doi.org/10.2110/scn.75.02.
[44] Harms J.C., Southard J.B., Walker R.G., 1982. Structures and sequences in clastic rocks. SEPM Short Course Notes, 9, 1-249. https://doi.org/10.2110/scn.82.09.
[45] Howell J.A., Schwarz E., Spalletti L.A., Veiga G.D., 2005. The Neuquén Basin: An overview. In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), The Neu-quén Basin, Argentina: A Case Study in Sequence Stratig-raphy and Basin Dynamics, vol. 252. Geological Society, London, Special Publications, pp. 1-14. https://doi.org/10.1144/GSL.SP.2005.252.01.01.
[46] Irastorza A., Turienzo M., Peralta F., Irastorza M., Zavala C., Sánchez N., 2019. La estructura del frente de deformación de la faja plegada y corrida del Agrio a los 38020’S, Cuenca Neuquina. Revista de la Asociación Geológica Argentina, 76(3), 213-228.
[47] Jopling A.V., Walker R.G., 1968. Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts. Journal of Sedimentary Petrology, 38(4), 971-984. https://doi.org/10.1306/74D71ADC-2B21-11D7-8648000102C1865D.
[48] Kietzmann D.A., Folguera A., 2020. Opening and Closure of the Neuquén Basin in the Southern Andes. Springer Earth System Sciences.
[49] Kneller B.C., Branney M.J., 1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42(4), 607-616. https://doi.org/10.1111/j.1365-3091.1995.tb00395.x.
[50] Lazo D.G., Cichowolski M., Rodríguez D.L., Aguirre-Urreta, M.B., 2005. Lithofacies, palaeoecology and palae-oenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina. In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), The Neu-quén Basin, Argentina: A Case Study in Sequence Stratig-raphy and Basin Dynamics. Geological Society, London, Special Publications, vol. 252, pp. 295-315. https://doi.org/10.1144/GSL.SP.2005.252.01.15.
[51] Leanza H.A., Hugo C.A., Repol D., Gonzalez R., Danieli J.C., 2001. Hoja Geológica 3969-I Zapala, Provin-cia del Neuquén. Buenos Aires: Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales, Boletín, vol. 275.
[52] Legarreta L., Uliana M.A., 1991. JurassiceCretaceous ma-rine oscillations and geometry of back-arc basin fill, cen-tral Argentine Andes. In: McDonald, D.I.M. (Ed.), Sedimentation, Tectonics and Eustasy. IAS Special Publi-action, vol. 12, pp. 429-450.
[53] Legarreta L., Uliana M.A., 1999. El jurásico y cretácico de la Cordillera principal y la Cuenca neuquina. In: Caminos, R. (Ed.), En Geología Argentina. Buenos Aires: Servicio Geológico Minero Argentino, Anales, vol. 29, pp. 399-416.
[54] López Cabrera,M.I., Mángano, M.G., Buatois, L.A., Olivero, E.B., Maples, C.G., 2019. Bivalves on the move: The interplay of extrinsic and intrinsic factors on the morphology of the trace fossil Protovirgularia. Pal-aios, 34(7), 349-363. https://doi.org/10.2110/palo.2019.004.
[55] Macdonald D., Gomez-Perez I., Franzese J., Spalletti L., Lawver L., Gahagan L., Dalziel I., Thomas C., Trewin N., Hole M., Paton D., 2003. Mesozoic break-up of SW Gondwana: Implications for regional hydrocarbon potential of the southern South Atlantic. Marine and Petroleum Geology, 20(3-4), 287-308. https://doi.org/10.1016/S0264-8172(03)00045-X.
[56] MacEachern, J.A., Bann, K.L., Bhattacharya, J.P., Howell Jr., C.D., 2005. Ichnology of deltas: Organism re-sponses to the dynamic interplay of rivers, waves, storms, and tides. In: Giosan, L., Bhattacharya, J.P. (Eds.), River Deltas d Concepts, Models, and Examples. SEPM Special Publications, vol. 83, pp. 49-85. https://doi.org/10.2110/pec.05.83.0049.
[57] Miall A.D.,1978. Lithofacies types and vertical profile models in braided river deposits: A summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Soci-ety of Petroleum Geologists, Memoir, vol. 5, pp. 597-604.
[58] Midtgaard H.H.,1996. Inner-shelf to lower-shoreface hum-mocky sandstone bodies with evidence for geostrophic in?uenced combined ?ow, Lower Cretaceous, West Greenland.Journal of Sedimentary Research, 66(2), 343-353.
[59] Morsilli M., Pomar L., 2012. Internal waves vs. surface storm waves: A review on the origin of hummocky cross-stratification. Terra Nova, 24(4), 273-282. https://doi.org/10.1111/j.1365-3121.2012.01070.x.
[60] Mount J.,1985. Mixed siliciclastic and carbonate sedi-ments: A proposed first-order textural and compositional classification. Sedimentology, 32(3), 435-442. https://doi.org/10.1111/j.1365-3091.1985.tb00522.x.
[61] Mpodozis C., Ramos V., 1989. The Andes of Chile and Argentina. In: Ericksen, G.E., Can~as Pinochet, M.T., Reinemud, J.A. (Eds.), Geology of the Andes and Its Rela-tion to Hydrocarbon and Mineral Resources: Circum-Pa-cific Council for Energy and Mineral Resources. Earth Sciences Series, vol. 11, pp. 59-90 (Houston).
[62] Mulder T., Alexander J., 2001. The physical character of subaqueous sedimentary density ?ows and their deposits. Sedimentology, 48(2), 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x.
[63] Mulder T., Syvitski J.P.M., 1995. Turbidity currents gener-ated at river mouths during exceptional discharges to the world oceans.The Journal of Geology, 103(3), 285-299.
[64] Mulder, T., Syvitski, J.P.M., Migeon, S., Fauge、res, J., Savoye, B., 2003. Marine hyperpycnal ?ows: Initiation, behavior and related deposits. A review. Marine and Pe-troleum Geology, 20(6-8), 861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003.
[65] Mutti E., Davoli G., Tinterri R., Zavala C., 1996. The importance of ancient ?uvio-deltaic systems dominated by catastrophic ?ooding in tectonically active basins.Memorie di Scienze Geologiche, Universita di Padova, 48, 233-291.
[66] Mutti E., Gulisano C.A., Legarreta L., 1994a. Anomalous systems tracts stacking patterns within third order deposi-tional sequences (JurassiceCretaceous Back Arc Neuquén Basin, Argentine Andes). In: Second High-Resolution Sequence Stratigraphy Conference, Abstracts, pp. 137-143 (Tremp).
[67] Mutti E., Gulisano C.A., Legarreta L., 1994b. Flood-related gravity-?ow deposits in ?uvial and ?uvio-deltaic depositional systems and their sequence stratigraphic im-plications. In: Second High-Resolution Sequence Stratig-raphy Conference, Abstracts, pp. 131-136 (Tremp).
[68] Nichols G.,1999. Sedimentology and Stratigraphy. Black-well, London.
[69] Omarini J., Lescano M.,Odino-Barreto, A.L., Campetella, D., Tunik, M., Garbán, G., Brea, F., Erra, G., Aguirre-Urreta, B., Martinez, M., 2020. Palae-oenvironmental conditions for the preservation of organic matter during the late Hauterivian in the Neu-quén Basin (Western Argentina). Marine and Petroleum Geology, 120, 104469. https://doi.org/10.1016/j.marpetgeo.2020.104469.
[70] Otharán G.,2020. Sedimentología y análisis de facies de la Formación Vaca Muerta (Tithoniano-Valanginiano), Cuenca Neuquina. El rol de los ?ujos de fango en la depositación de espesas sucesiones de lutitas. Ph.D Thesis. Universidad Nacional del Sur, Bahía Blanca.
[71] Otharán G., Zavala C., Arcuri M., Di Meglio M., Zorzano A., Marchal D., Ko€hler G., 2020. Análisis de facies en deposi-tos de grano fino asociados a ?ujos de fango. Formación Vaca Muerta (Tithoniano-Valanginiando), Cuenca Neuquina central, Argentina.Andean Geology, 47(2), 384-417.
[72] Overeem I., Kroonenberg S.B., Veldkamp A., Groenesteijn K., Rusakov G.V., Svitoch A.A., 2003. Small-scale stratigraphy in a large ramp delta: Recent and Holocene sedimentation in the Volga delta, Caspian Sea. Sedimentary Geology, 159(3-4), 133-157. https://doi.org/10.1016/S0037-0738(02)00256-7.
[73] Paolillo M.A., Guler M.V., Lazo D.G., Pazos P.J., Ottone E.G., Aguirre-Urreta B., 2018. Early Cretaceous dino?agellate cysts from the Agrio Formation at its type locality (Neuquén Basin, Argentina) and their biostrati-graphic implications.Ameghiniana, 55(5), 554-570.
[74] Pazos P.J., Lazo D.G., Tunik M.A., Marsicano C.A., Fernández D.E.,Aguirre-Urreta, M.B., 2012. Paleoenvir-onmental framework of dinosaur tracksites and other ich-nofossils in Early Cretaceous mixed siliciclastic-carbonate deposits in the Neuquén Basin, northern Patagonia (Argentina). Gondwana Research, 22(3-4), 1125-1140. https://doi.org/10.1016/j.gr.2012.02.003.
[75] Pettijohn F.J.,1975. Sedimentary Rocks. Harper & Row, New York.
[76] Ponce, J.J., Montagna, A.O., Carmona, N.B., Canale, N., 2015. Guía de Campo. Escuela de Verano 2015. Sedimen-tología e Icnología de los Sistemas Petroleros no Conven-cionales de la Cuenca Neuquina (Los Molles-Lajas y Vaca Muerta-Quintuco). Universidad Nacional de Río Negro-Fundación YPF.
[77] Postma G.,1995. Causes of architectural variations in deltas. In: Oti, M.N., Postma, G. (Eds.), Geology of Deltas. Balkema, The Netherlands, pp. 3-16.
[78] Potter P.E., Maynard J.B., Depetris P.J., 2005. Mud and Mudstones: Introduction and Overview. Springer, New York.
[79] Ramos V.A., Folguera A., 2005. Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, Lon-don, Special Publications, vol. 252, pp. 15-35. https://doi.org/10.1144/GSL.SP.2005.252.01.02.
[80] Ramos V.A., Kay S.M., 2006. Overview of the tectonic evo-lution of the southern central Andes of Mendoza and Neu-quén (35oe39oS latitude). In: Kay, S.M., Ramos, V.A. (Eds.), Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35oe39oS lat). GSA Special Papers, vol. 407, pp. 1-17. https://doi.org/10.1130/2006.2407(01.
[81] Reineck H., Wunderlich F., 1968. Classification and origin of ?aser and lenticular bedding. Sedimentology, 11(1-2), 99-104. https://doi.org/10.1111/j.1365-3091.1968.tb00843.x.
[82] Sagasti G.,2005. Hemipelagic record of orbitally-induced dilution cycles in Lower Cretaceous sediments of the Neu-quén Basin. In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society, London, Special Publications, vol. 252, pp. 231-250. https://doi.org/10.1144/GSL.SP.2005.252.01.11.
[83] Sanders J.E.,1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mech-anisms. In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. SEPM Special Publication, vol. 12, pp. 192-219. https://doi.org/10.2110/pec.65.08.0192.
[84] Schieber J., Southard J.B., 2009. Bedload transport of mud by ?occule ripples d Direct observation of ripple migra-tion processes and their implications. Geology, 37(6), 483-486. https://doi.org/10.1130/G25319A.1.
[85] Schieber J., Southard J., Thaisen K., 2007. Accretion of mudstone beds from migrating ?occule ripples. Science, 318(5857), 1760-1763. https://doi.org/10.1126/science.1147001.
[86] Schieber J., Yawar Z., 2009. A new twist on mud deposi-tion: Mud ripples in experiment and rock record.The Sedimentary Record, 7(2), 4-8.
[87] Simons D.B., Richardson E.V., Nordin Jr., C.F., 1965. Sedi-mentary structures generated by ?ow in alluvial channels. In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. SEPM Special Publication, vol. 12. SEPM Special Publication, pp. 34-52. https://doi.org/10.2110/pec.65.08.0034.
[88] Soares J.L., Santos H.P., Brito A.S., Nogueira A.A.E., Nogueira, A.C.R., Amorim, K.B., 2020. The crustaceans burrow Sinusichnus sinuosus from the OligoceneeMiocene carbonate deposits of eastern Amazonia. Ichnos, 27(2), 97-106. https://doi.org/10.1080/10420940.2019.1697256.
[89] Southard J.B.,1991. Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sci-ences, 19, 423-455. https://doi.org/10.1146/annurev.ea.19.050191.002231.
[90] Spalletti L.A., Franzese J.R., Matheos S.D., Schwarz E., 2000. Sequence stratigraphy of a tidally dominated carbonateesiliciclastic ramp; the TithonianeEarly Ber-riasian of the southern Neuquén Basin, Argentina. Jour-nal of the Geological Society, 157(2), 433-446. https://doi.org/10.1144/jgs.157.2.433.
[91] Spalletti L.A., Poiré D.G., Pirrie D., Matheos S., Doyle P., 2001a. Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clásticaecarbonática del Cretácico de la Cuenca Neuquina, Argentina.Revista de la Sociedad Geológica de Espan~a, 14, 57-74.
[92] Spalletti L.A., Poiré D.G., Schwarz E., Veiga G.D., 2001b. Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonateesiliciclastic ramp: Neu-quén Basin, Argentina. Journal of South American Earth Sciences, 14(6), 609-624. https://doi.org/10.1016/S0895-9811(01)00039-6.
[93] Sumner E.J., Amy L.A., Talling P.J.,2008. Deposit struc-ture and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78(8), 529-547. https://doi.org/10.2110/jsr.2008.062.
[94] Tucker M.E., Wright V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Publications, Oxford.
[95] Tunik M.A., Pazos P.J., Impiccini A., Lazo D., Aguirre-Urreta M.B., 2009. Dolomitized tidal cycles in the Agua de la Mula member of the Agrio Formation (Lower Creta-ceous), Neuquén Basin, Argentina.Latin American Jour-nal of Sedimentology and Basin Analysis, 16(1), 29-43.
[96] Tyson R.,1995. Sedimentary Organic Matter. Chapman &Hall, London.
[97] Uliana M.A., Biddle K.T., Cerdan J., 1989. Mesozoic exten-sion and the formation of Argentine sedimentary basins. In: Tankard, A.J., Balkwill, H.R. (Eds.), Extensional Tec-tonics and Stratigraphy of the North Atlantic Margins. AAPG Memoirs, vol. 46, pp. 599-614. https://doi.org/10.1306/M46497C39.
[98] Van Wagoner J.C., Mitchum R.M., Campion K.M., Rahmanian V.D., 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and fades. AAPG Methods in Exploration Series, no. 7: 55 p. + 14 fold-out plates. Amer-ican Association of Petroleum Geologists, Tulsa.
[99] Veiga R., Vergani G.D., 1993. Depósitos de nivel bajo: Nuevo enfoque sedimentológico y estratigráfico del miembro Avilé en el Norte del Neuquén. Argentina. In: 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos, Actas I, pp. 55-65 (Mendoza).
[100] Vergani G.D., Tankard A.J., Belotti H.J., Welsink H.J., 1995. Tectonic evolution and paleogeography of the Neu-quén Basin, Argentina. In: Tankard, A.J., Suárez Soruco, R., Welsink, H.J. (Eds.), Petroleum Basins of South America. AAPG Memoir, vol. 62, pp. 383-402.
[101] Walker R.G., Duke W.L., Leckie D.A., 1983. Hummocky stratification: Significance of its variable bedding se-quences: Discussion and reply: Discussion. GSA Bulletin, 94(10), 1245-1249. https://doi.org/10.1130/0016-7606(1983)94<1245:HSSOIV>2.0.CO;2.
[102] Weaver C.E.,1931. Paleontology of the Jurassic and Creta-ceous of West Central Argentina. Memoir University of Washington, vol. 1, 469 p. (Seattle).
[103] Weaver, C.E., 2020. Paleontology of the Jurassic and Creta-ceous of West Central Argentina. Memoir University of Washington, vol. 1, 469 p. (Seattle)
[104] Wilson R.D., Schieber J.,2014. Muddy prodeltaic hyper-pycnites in the lower Genesee Group of central New York, USA: Implications for mud transport in epiconti-nental seas. Journal of Sedimentary Research, 84(10), 866-874. https://doi.org/10.2110/jsr.2014.70.
[105] Wright L.D., Coleman J.M., 1973. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. AAPG Bulletin, 57(2), 370-398. https://doi.org/10.1306/819A4274-16C5-11D7-8645000102C1865D.
[106] Zavala C., Arcuri M., Di Meglio M., Zorzano A., Otharán G., Irastorza A., Torresi A., 2021. Deltas: A new classification expanding bates's concepts. Journal of Palaeogeography, 10(3), 341-355. https://doi.org/10.1186/s42501-021-00098-w.
[107] Zavala C., Arcuri M., Gamero H., Contreras C., Meglio M.D., 2011. A genetic facies tract for the analysis of sustained hyperpycnal ?ow deposits. In: Slatt, R.M., Zavala, C. (Eds.), Sediment Transfer from Shelf to Deep Water-Revisiting the Delivery System. AAPG Studies in Geology, vol. 61, pp. 31-51. https://doi.org/10.1306/13271349St613438.
[108] Zavala C., Pan S.X., 2018. Hyperpycnal ?ows and hyper-pycnites: Origin and distinctive characteristics.Litho-logic Reservoirs, 30(1), 1-27.
[109] Zavala C., Ponce J.J., Arcuri M., Drittanti D., Freije H., Asensio M., 2006. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso For-mation (Cretaceous) of west-central Argentina. Journal of Sedimentary Research, 76(1), 41-59. https://doi.org/10.2110/jsr.2006.12.
[110] Zuffa G.G.,1980. Hybrid arenites: Their composition and classification. Journal of Sedimentary Petrology, 50(1), 21-29. https://doi.org/10.1306/212F7950-2B24-11D7-8648000102C1865D. |