aChina University of Petroleum (Beijing), Beijing 102249, China; bState Key Laboratory of Petroleum Resources and Prospecting, Ministry of Education, Beijing 102249, China; cChina University of Geosciences (Wuhan), Wuhan 430074, China; dPetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
Abstract Meso-Neoproterozoic dolostone is abnormally well-developed in the platform areas in China, detailly, in the Mesoproterozoic Calymmian Wumishan Formation of North China Basin, Neoproterozoic Ediacaran Qigbulak Formation of Tarim Basin, and the Neoproterozoic Ediacaran Dengying Formation of Sichuan Basin. The outcrops and drilling cores from these basins show that these dolostones are mostly thick-bedded to massive, with mud-sized to silt-sized crystalline dolostone reaching 86% to 97% of the total dolostone thickness. These dolostones basically suffered no secondary metasomatism, regardless of containing microorganisms (such as algae and bacteria) or not. The analyses of sedimentary palaeogeographic features indicate that: (1) the Meso-Neoproterozoic dolostone nearly covered the entire area basins, and was widely deposited in supratidal to intertidal zones, as well as in open platform environments; (2) the dolostone was subdivided according to the crystalline size, with the distribution controlled by geomorphology, i.e., the pure mud-sized crystalline dolostone developing in depression areas, whereas the grainy mud-sized crystalline dolostone or the mound stromatolitic mud-sized crystalline dolostone developing in uplift areas; (3) deep-water basins developed between the carbonate platforms, and the seismic profiles show that these basins were formed by syngenetic deep faults in the Meso-Neoproterozoic strata. These syngenetic faults increased Mg2+ concentration in the seawater by injecting rich-Mg2+-bearing hydrothermal fluids into the carbonate platforms. The analyses of geochemical and paleoclimatic indexes reveal that there is no obvious difference in carbon and oxygen isotope ratios between dolostones having different textures, with the ratios similar to those of the global seawater of the Meso-Neoproterozoic, indicating that the silt-sized crystalline dolostone has the same sedimentary origin as the mud-sized crystalline dolostone, i.e., the former is from authigenic recrystallization of the latter rather than secondary metasomatism. Therefore, whatever the crystalline sizes are, the dolostones are all originated from sedimentation. All the petrological, sedimentary and geochemical data suggest that the dolostones covering almost the whole Meso-Neoproterozoic typical platform areas of China are of relatively primary sedimentary origin.
[1] Anderson T.F., Arthur M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentological and paleoenvirmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course Notes 10: 1-151. https://doi.org/10.2110/scn.83.01.0000. [2] Bao Z.D.,1998. Continental slope limestones of Lower and Middle Triassic, South China. Sedimentary Geology 118(1-4), 77-93. https://doi.org/10.1016/S0037-0738(98)00006-2. [3] Bao Z.D.,1999. Episodic carbonate deposits on the Triassic continental slope in southern China. Acta Geologica Sinica (English Edition) 73(1), 93-103. https://doi.org/10.1111/j.1755-6724.1999.tb00815.x. [4] Bao Z.D., Chen J.F., Zhang S.C., Zhao H.W., Zhang Q.H., Li Y., 2004. Sedimentary environment and development controls of the hydrocarbon source beds: Middle and Upper Proterozoic in northern North China. Science in China. Series D, Earth sciences 47(Supp. II), 133-140. https://doi.org/10.1360/04zd0032. [5] Bao Z.D., Jin Z.J., Sun L.D., Wang Z.M., Wang Q.H., Zhang Q.H., Shi X.Z., Li W., Wu M.B., Gu Q.Y., Wu X.M., Zhang H.W.,2006. Sea-level fluctuation of the Tarim area in the Early Paleozoic: Respondence from geochemistry and karst. Acta Geologica Sinica 80(3), 366-373. https://doi.org/10.3321/j.issn:0001-5717.2006.03.008 (in Chinese with English abstract). [6] Bao Z.D., Li R.F., Feng Z.Z., 1999a. Stratigraphic division and correlation of the Ordovician in the eastern and the western Ordos Basin: A review.Geological Review 45(4), 375-381 (in Chinese with English abstract). [7] Bao Z.D., Li R.F., Pang X.Q., 1999b. Genesis of the massive Ordovician dolostones in the Ordos Basin, North China: Evidence from inclusions. Energy Exploration & Exploitation 17(3-4), 259-267. https://doi.org/10.1177/014459879901700303. [8] Bao Z.D., Qi Y.C., Jin Z.J., Zhang X.L., Hu G.C., Zhang Q.H., Shi X.Z., Li W., Yang F., Pan W.Q., Sun Y.S.,2007. Karst development respondence to sea-level fluctuation: A case from the Tarim area in the Early Paleozoic. Acta Geologica Sinica 81(2), 205-211. https://doi.org/10.3321/j.issn:0001-5717.2007.02.009 (in Chinese with English abstract). [9] Bao Z.D., Zhu J.Q., Jiang M.S., Xia Y.,1998. Isotope and trace element evolution: Responding to sea-level fluctuation — An Example of Ordovician in middle Tarim Basin. Acta Sedimentologica Sinica 16(4), 32-36. https://doi.org/10.14027/j.cnki.cjxb.1998.04.006 (in Chinese with English abstract). [10] Botz R.W., von der Borch C.C., 1984. Stable isotope study of carbonate sediments from the Coorong area, South Australia. Sedimentology 31(6), 837-849. https://doi.org/10.1111/j.1365-3091.1984.tb00890.x. [11] de Dolomieu, D., 1791. Sur un genre de pierres calcaires très peu effervescentes avec les acides et phosphorescentes par la collision.Journal of Physics, 39: 3-10. [12] Du J.H., Li X.B., Bao H.P., Xu W.L., Wang Y.T., Huang J.P., Wang H.B., Wanyan R., Wang J., 2019. Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin, NW China. Petroleum Exploration and Development 46(5), 866-882. https://doi.org/10.1016/S1876-3804(19)60246-6. [13] Epstein S., Buchsbaum R., Lowenstam H., Urey H.C., 1951. Carbonate-water isotopic temperature scale. GSA Bulletin 62(4), 417-426. https://doi.org/10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2. [14] Epstein S., Buchsbaum R., Lowenstam H.A., Urey H.C., 1953. Revised carbonate-water isotopic temperature scale. GSA Bulletin 64(11), 1315-1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2. [15] Erez J., Luz B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta 47(6), 1025-1031. https://doi.org/10.1016/0016-7037(83)90232-6. [16] Feng Z.Z.,(ed.), 1992. Sedimentary Petrology. Beijing: Petroleum Industry Press, pp. 64-69 (in Chinese). [17] Feng Z.Z.,(ed.), 2004. Lithofacies Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press, pp. 29-47 (in Chinese). [18] Grotzinger J.P., Knoll A.H., 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 10(6), 578-596. https://doi.org/10.2307/3515096. [19] He Y.L., Liu B., Qin S., 2010. Study on the dolomitization and dolostone genesis.Acta Scientiarum Naturalium Universitatis Pekinensis 46(6), 1010-1020 (in Chinese with English abstract). [20] Hebei Bureau of Geology and Mineral Resources Exploration, 1982. Regional Geological Records of Hebei Province. Beijing: Geological Publishing, pp. 96-99 (in Chinese). [21] Horita J., Zimmermann H., Holland H.D., 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta 66(21), 3733-3756. https://doi.org/10.1016/S0016-7037(01)00884-5. [22] Huang S.J.,2010. Diagenesis of Carbonate Rocks. Beijing: Geological Publishing House (in Chinese). [23] Husson J.M., Higgins J.A., Maloof A.C., Schoene B.,2015. Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion. Geochimica et Cosmochimica Acta 160, 243-266. https://doi.org/10.1016/j.gca.2015.03.012. [24] Jiang H.J., Chen Q.L., Yang X., Chu C.L.,2017. The style of sequence stratigraphy of Neoproterozoic rift basin in the Tarim Basin. Acta Geologica Sinica 91(3), 588-604. https://doi.org/10.3969/j.issn.0001-5717.2017.03.007 (in Chinese with English abstract). [25] Jin Z.K., Feng Z.Z.,1999. Origin of dolostones of the Lower Permian in East Yunnan-West Sichuan — Dolomitization through leaching of basalts. Acta Sedimentologica Sinica 17(3), 383-389. https://doi.org/10.3969/j.issn.1000-0550.1999.03.008 (in Chinese with English abstract). [26] Kaufman A.J., Xiao S.H., 2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425(6955), 279-282. https://doi.org/10.1038/nature01902. [27] Keith M.L., Weber J.N., 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta 28(10-11), 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5. [28] Kuang H.W., Liu Y.Q., Geng Y.S., Bai H.Q., Peng N., Fan Z.X., Song H.X., Xia X.X., Wang Y.C., Chen X.S.,2019. Important sedimentary geological events of the Meso-Neoproterozoic and their significance. Journal of Palaeogeography (Chinese Edition) 21(1), 1-30. https://doi.org/10.7605/gdlxb.2019.01.001 (in Chinese with English abstract). [29] Mountjoy E.W., Halim-Dihardja M.K., 1991. Multiple phase fracture and fault-controlled burial dolomitization, Upper Devonian Wabamun Group, Alberta. Journal of Sedimentary Petrology 61(4), 590-612. https://doi.org/10.1306/D426776C-2B26-11D7-8648000102C1865D. [30] Pratt B.R.,2001. Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin: Integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, ca. 1.45 Ga), western North America. Sedimentary Geology 141-142, 371-394. https://doi.org/10.1016/S0037-0738(01)00083-5. [31] Qian Y.X., You D.H., Chen D.Z., Qing H.R., He Z.L., Ma Y.C., Tian M., Xi B.B., 2012. The petrographic and geochemical signatures and implication of origin of the Middle and Upper Cambrian dolostone in eastern margin Tarim: Comparative studies with the Whirlpool point of the Western Canada Sedimentary Basin.Acta Petrologica Sinica 28(8), 2525-2541 (in Chinese with English abstract). [32] Ren Y., Zhong D.K., Gao C.L., Yang X.Q., Li H.Y., Yang Q., Liu Y.L., Wang Y.,2016. Carbon and oxygen isotope compositions and its paleoenvironment implication of Lower Cambrian Longwangmiao Formation in the east part of Sichuan Basin. Marine Origin Petroleum Geology 21(4), 11-20. https://doi.org/10.3969/j.issn.1672-9854.2016.04.002 (in Chinese with English abstract). [33] Shackleton N.J.,1974. Attainment of isotopic equilibrium between ocean water and the benthonic formainitera genus Uvigerina: Isotopic changes in the ocean during the last glacial.Centre National de la Recherche Scientifique Colloques Internationaux 219, 203-209. [34] Sichuan Bureau of Geology and Mineral Resources, 1989. Regional Geological Records of Sichuan Provience. Beijing: Geological Publishing House (in Chinese). [35] Sun S.Q.,1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic.Journal of Sedimentary Research, A64(7): 360-362. [36] Taylor H.P.,1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology 69(6), 843-883. https://doi.org/10.2113/gsecongeo.69.6.843. [37] Timofeeff M.N., Lowenstein T.K.,Da Silva, M.A.M., Harris, N.B., 2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta 70(8), 1977-1994. https://doi.org/10.1016/j.gca.2006.01.020. [38] Tucker M.E.,1982. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology, 10(1):7-12. [39] Turner E.C.,2009. Mesoproterozoic carbonate systems in the Borden Basin, Nunavut. Canadian Journal of Earth Sciences 46(12), 915-938. https://doi.org/10.1139/E09-062. [40] Vasconcelos C., McKenzie J.A., Bernasconi S., Grujic D., Tiens A.J., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377(6546), 220-222. https://doi.org/10.1038/377220a0. [41] Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha O.G., Strauss H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161(1-3), 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9. [42] von der Borch, C.C., 1976. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia. Journal of Sedimentary Petrology 46(4), 952-966. https://doi.org/10.1306/212F709F-2B24-11D7-8648000102C1865D. [43] Wang D.,2017. Tectonic Paleogeographic Evolution and Petroleum Geological Significance during Late Spinian-Early Cambrian in Central Sichuan Basin (Ph.D. Thesis). Wuhan: Yangtze University, 76 p. (in Chinese). [44] Warren J.,2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews 52(1-3), 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2. [45] Wei G.Q., Zhu Q.Y., Yang W., Zhang C.L., Mo W.L., 2019. Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin, NW China. Petroleum Exploration and Development 46(5), 883-895. https://doi.org/10.1016/S1876-3804(19)60247-8. [46] Wei X., Zhu Y.J., Xu H., Zhao G.C., Li Y.X.,2006. Discussion on Neogene dolostone forming condition in Xisha Islands: Evidences from isotope C and O and fluid inclosures. Acta Petrologica Sinica 22(9), 2394-2404. https://doi.org/10.3321/j.issn:1000-0569.2006.09.016 (in Chinese with English abstract). [47] White B.,1981. Shallowing-upward cycles in the Middle Proterozoic Altyn Formation. Nature 294(5837), 157-158. https://doi.org/10.1038/294157a0. [48] Wood R., Liu A.G., Bowyer F., Wilby P.R., Dunn F.S., Kenchington C.G., Cuthill J.F.H., Mitchell E.G., Penny A., 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution 3(4), 528-538. https://doi.org/10.1038/s41559-019-0821-6. [49] Wu L., Guan S.W., Yang H.J., Ren R., Zhu G.Y., Jin J.Q., Zhang C.Y., 2017. The paleogeographic framework and hydrocarbon exploration potential of Neoproterozoic rift basin in northern Tarim Basin. Acta Petrolei Sinica 38(4), 375-385. https://doi.org/10.7623/syxb201704002 (in Chinese with English abstract). [50] Xinjiang Bureau of Geo-Exploration and Mineral Development, 1993. Regional Geological Records of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House (in Chinese). [51] Yang F., Bao Z.D., Zhang D.M., Jia X., Xiao J., 2017. Carbonate secondary porosity development in a polyphase paleokarst from Precambrian system: Upper Sinian examples, North Tarim basin, northwest China. Carbonates and Evaporites 32(2), 243-256. https://doi.org/10.1007/s13146-017-0336-7. [52] Zenger D.H., Dunham J.B., Ethington R.L., 1980. Concepts and Models of Dolomitization. SEPM Special Publications 28, 320 p. https://doi.org/10.2110/pec.80.28. [53] Zhang D.M., Bao Z.D., Pan W.Q., Hao Y., Chen Y.Q., Wang J., Zhang Y.Q., Lai H.F.,2014. Characteristics and forming mechanisms of evaporite platform dolomite reservoir in Middle Cambrian of Xiaoerbulake section, Tarim Basin. Natural Gas Geoscience 25(4), 498-507. https://doi.org/10.11764/j.issn.1672-1926.2014.04.0498 (in Chinese with English abstract). [54] Zhang Z.,2018. The wonderful stone: Pyrite dolomite. 6th China (Hunan) International Mineral & Gem Expo, Chenzhou (in Chinese). [55] Zhao C.L., Xu Y.K., Bai G.Y., Lai X.K., 1977. Sedimentary characteristics and facies analysis of the Gaoyuzhuang Formation-Wumishan Formation in the north-central Taihang Mountains.Journal of East China Petroleum Institute 1(3), 118-138 (in Chinese). [56] Zhao C.L., Zhu X.M., 2001. Sedimentary Petrology (The Third Edition). Beijing: Petroleum Industry Press (in Chinese). [57] Zhu J.Q., Zhang Y.S., Yu B.S., Wu S.Q., You X.L., Liu L., He K., 2013. Dolomite. In: Feng, Z.Z. (ed.), Sedimentology of China (The Second Edition). Beijing: Petroleum Industry Press, pp. 266-331 (in Chinese). [58] Zhu M.Y.,2016. Research progress of global Neoproterozoic sedimentary strata. In: Sun, S., Wang, T.G. (ed.). Middle Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Beijing: Science Press, pp. 3-24 (in Chinese).