Tracking sources and paleotectonic settings of Mesozoic sandstones in interlinked rift basins of western India: an integrated approach using petrography and heavy mineral chemistry
Abstract Based on integration of field, petrographic and heavy mineral chemical data, this study highlights the source and tectonic setting of the Mesozoic sandstones of Kutch, Saurashtra, Narmada and Cambay basins at the western margin of India, formed by the progressive splitting of the eastern Gondwanaland. The Kutch Basin is dominated by arkosic sandstone, whereas Saurashtra, Narmada and Cambay basins show the predominance of sub-arkose and sub-litharenite. The modal analyses of framework grains in Kutch sandstones indicate basement uplift and transitional continent settings. In contrast, the sandstones of Saurashtra, Narmada and Cambay basins bear imprints of recycled orogenic and craton interior belts. The presence of abraded and detrital quartz overgrowth and rounded zircons in most sandstones reveal the recycling of sediments in these basins. Tourmaline and rutile mineral compositions constrain the possible lithology of source rocks. The tourmaline mineral chemistry (Ca-Fetot-Mg plot) suggests the derivation of sediments from various sources, including Li-poor granitoids associated with pegmatites, aplites, Ca-poor metapelites, metapsammites and quartz-tourmaline-rich granitic rocks. The compositions of rutile grains (Cr vs. Nb plot) in sandstones indicate metapelitic sources. The gamut of all mineral chemical data supports the predominance of sediment sources from quartzo-feldspathic rocks with minor inputs from mafic rocks. Based on available paleocurrent data and correlation of source compositions, we infer that the Mesozoic sediments of Kutch, Saurashtra, Narmada and Cambay basins were primarily sourced by various lithologies of the Aravalli Craton. The Narmada Basin possibly received additional sediment input from the Bundelkhand Craton.
. Tracking sources and paleotectonic settings of Mesozoic sandstones in interlinked rift basins of western India: an integrated approach using petrography and heavy mineral chemistry[J]. Journal of Palaeogeography, 2022, 11(2): 173-193.
. Tracking sources and paleotectonic settings of Mesozoic sandstones in interlinked rift basins of western India: an integrated approach using petrography and heavy mineral chemistry[J]. Journal of Palaeogeography, 2022, 11(2): 173-193.
[1] Acharyya, S.K., Lahiri, T.C.1991. Cretaceous palaeogeography of the Indian subcontinent: a review.Cretaceous Research, 12: 3-26. [2] Ahmad, A.H.M., Akhtar, K.1990. Clastic environments and facies of the Lower Cretaceous Narmada basin, India.Cretaceous Research, 11: 175-190. [3] Ahmad A.H.M., Noufal K.N., Masroor A.M., Tavheed K.2014. Petrography and geochemistry of Jumara dome sediments, Kachchh Basin: Implications for provenance, tectonic setting and weathering intensity.Chinese Journal of Geochemistry, 33: 9-23. [4] Akhtar, K., Ahmad, A.H.M.1991. Single-cycle cratonic quartz arenites produced by tropical weathering: The Nimar Sandstone (Lower Cretaceous), Narmada Basin, India.Sedimentary Geology, 71: 23-32. [5] Akhtar K., Khan M.M., Ahmad A.H.M.1994. Petrofacies, provenance and tectonic setting of Nimar Sandstone (Lower Cretaceous), Rajpipla-Jobat area.Journal of Geological Society of India, 44: 532-539. [6] Alberti M., Fürsich F.T., Pandey D.K., Mukherjee D.2017. Overview on the middle to upper Jurassic sedimentary succession of Gangta Bet in the Kachchh Basin, western India, with special emphasis on its lithostratigraphy, biostratigraphy, and palaeoenvironment.Journal of the Geological Society of India, 89: 259-270. [7] Aquil M.1982. Petrography and Palaeocurrents of the Himmatnagar Sandstone (Cretaceous) in the Vicinity of Himatnagar Town, Sabarkantha District, Gujarat State. Ph.D. dissertation, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. [8] Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., Carranza-Edwards A., Garcia D., Eby G.N., Balaram V., Cruz-Ortiz N.L.2012. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance.Geochemistry, 72: 345-362. [9] Armstrong-Altrin J.S., Machain-Castillo M.L., Rosales-Hoz L., Carranza-Edwards A., Sanchez-Cabeza J.A., Ruíz-Fernández A.C.2015. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis.Continental Shelf Research, 95: 15-26. [10] Armstrong-Altrin J.S., Lee Y.I., Kasper‐Zubillaga J.J., Trejo‐Ramírez E.2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting.Geological Journal, 52: 559-582. [11] Arora A., Banerjee S., Dutta S.2015. Black shale in late Jurassic Jhuran Formation of Kutch: possible indicator of oceanic anoxic event.Journal of the Geological Society, 85: 265-278. [12] Arora A., Dutta S., Gogoi B., Banerjee S.2017. The effects of igneous dike intrusion on organic black shale and its implications: Late Jurassic Jhuran Formation, India.International Journal of Coal Geology, 178: 84-99. [13] Arora A.2017. Integrated Sedimentological and Organic Geochemical Investigations of the Mesozoic Jhuran Formation of Kutch for Palaeo-environmental Interpretations. Unpublished Ph.D. thesis. Indian Institute of Technology, Bombay, India. [14] Aslam M.1991. Trace fossils from the Ranipat sediments (Early Cretaceous), Saurashtra Basin, Gujarat, Western India.Current Science, 61: 403-405. [15] Bansal U., Banerjee S., Pande K., Arora A., Meena S.S.2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch Basin, India) and its implications.Marine and Petroleum Geology, 82: 97-117. [16] Bansal U., Banerjee S., Pande K., Ruidas D.K.2020. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada Basin, central India.Geological Magazine, 157: 233-247. [17] Basu A., Young S.W., Suttner L.J., James W.C., Mack G.H.1975. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation.Journal of Sedimentary Petrology, 45: 873-882. [18] Beaumont H., Clarke S.M., Burley S.D., Taylor A.M. and Mohapatra P., 2019. Sedimentology and the facies architecture of the Ghaggar‐Hakra Formation, Barmer Basin, India: Implications for early Cretaceous deposition on the north‐western Indian Plate margin.The Depositional Record, 5: 53-83. [19] Bhatt N.Y., Solanki P.M., Prakash N., Das N.2016. Depositional environment of Himmantnagar Sandstone (Lower/Middle Cretaceous): A perspective.The Palaeobotanist, 56: 67-84. [20] Bhattacharya, A.R., Singh, S.P.2013. Proterozoic crustal-scale shearing in the Bundelkhand massif with special reference to quartz reefs.Journal of the Geological Society of India, 82: 474-484. [21] Bhattacharya B., Jha S., Mondal P.2020. Palaeogeographic reconstruction of a fluvio-marine transitional system in Narmada rift basin, India-Implications on Late Cretaceous global sea-level rise.Journal of Palaeogeography, 9(1): 1-22. [22] Biswas S.K.1977. Mesozoic rock-stratigraphy of Kutch, Gujarat.Quarterly Journal of the Geological Mineralogical and Metallurgical Society of India, 49: 1-51. [23] Biswas S.K.1982. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin.AAPG Bulletin, 66: 1497-1513. [24] Biswas S.K.1987. Regional tectonic framework, structure and evolution of the western marginal basins of India.Tectonophysics, 135: 307-327. [25] Biswas S.K.1999. A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects.Proceedings of the Indian National Science Academy, A, 65: 261-283. [26] Biswas S.K.2005. A review of structure and tectonics of Kutch Basin, western India, with special reference to earthquakes.Current Science, 88: 1592-1600. [27] Biswas S.K.2016. Tectonic framework, structure and tectonic evolution of Kutch Basin, western India.In Conference- Geological Survey of India, 129-150. [28] Biswas, S.K., Deshpande, S.V.1968. The basements of Mesozoic sediments of Kutch.Bulletin of Geological, Mining and Mineralogical Society of India, 40: 7-18. [29] Biswas, S.K., Deshpande, S.V.1983. Tectonic map of Kachchh (Kutch). Institute of Petroleum Exploration, Oil & Natural Gas Commission, Dehradun, India. [30] Blatt, H., Christie, J.M.1963. Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks.Journal of Sedimentary Petrology, 33: 559-579. [31] Blatt H., Middleton G., Murray R.1980. Origin of Sedimentary Rocks. Prentice-Hall, New Jersey. [32] Casshyap, S.M., Aslam, M.1992. Deltaic and shoreline sedimentation in Saurashtra Basin, western India; an example of infilling in an Early Cretaceous failed rift.Journal of Sedimentary Research, 62: 972-991. [33] Chatterjee S., Goswami A., Scotese C. R.2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia.Gondwana Research, 23: 238-267. [34] Chaudhuri A., Banerjee S., Le Pera E.2018. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, Western India: Implications on provenance and basin evolution.Journal of Palaeogeography, 7: 2-14. [35] Chaudhuri A., Banerjee S., Chauhan G.2020a. Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, Western India.Marine and Petroleum Geology, 111: 476-495. [36] Chaudhuri A., Das K., Banerjee S., Fitzsimons I.C.W.2020b. Detrital zircon and monazite track the source of Mesozoic sediments in Kutch to rocks of Late Neoproterozoic and Early Palaeozoic orogenies in Northern India.Gondwana Research, 80: 188-20. [37] Chaudhuri A., Chatterjee A., Banerjee S., Ray J.S.2020c. Tracing multiple sources of sediments using trace element and Nd isotope geochemistry: provenance of the Mesozoic succession in the Kutch Basin, western India.Geological Magazine, 158: 359-374. [38] Chaudhuri A., Banerjee S., Prabhakar N., Das A.2020d. The use of heavy mineral chemistry in reconstructing provenance: A case study from Mesozoic sandstones of Kutch Basin, India.Geological Journal, 55: 7807-7817. [39] Chaudhuri A.,Le Pera, E., Chauhan, G., Banerjee, S. 2021. Provenance and Paleo-weathering of the Mesozoic Rocks of Kutch Basin: Integrating Results from Heavy Minerals and Geochemical Proxies. In: Mesozoic Stratigraphy of India. pp173-213. Springer, Cham, Switzerland. [40] Choudhary A.K., Gopalan K., Sastry C.A.1984. Present status of the geochronology of the Precambrian rocks of Rajasthan.Tectonophysics, 105: 131-140. [41] Crawford A.R.1975. Rb-Sr age determinations for the Mount Abu granite and related rocks of Gujarat.Journal of the Geological Society of India, 16: 20-28. [42] Critelli, S., Le Pera, E.1994. Detrital modes and provenance of Miocene sandstones and modern sands to the Southern Apennines thrust-top basins (Italy).Journal of Sedimentary Research, 64: 824-835. [43] Critelli S., Arribas J., Le Pera E., Tortosa A., Marsaglia K.M., Latter K.K.2003. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain.Journal of Sedimentary Research, 73: 72-81. [44] Dasgupta S.2021. A Review of Stratigraphy, Depositional Setting and Paleoclimate of the Mesozoic Basins of India. In: Mesozoic Stratigraphy of India. pp1-37. Springer, Cham, Switzerland. [45] Dasgupta A.K., Ghose A., Chaktaborty K.K.1993. Geological map of India.Geological Survey of India. [46] Desai, B.G., Biswas, S.K.2018. Post rift deltaic sedimentation in western Kachchh Basin: Insights from ichnology and sedimentology.Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 104-124. [47] Dickinson W.R.1970. Interpreting detrital modes of graywacke and arkose.Journal of Sedimentary Research, 40: 695-707. [48] Dickinson, W.R., Suczek, C.A.1979. Plate tectonics and sandstone compositions.AAPG Bulletin, 63: 2164-2182. [49] Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T.1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting.Geological Society of America Bulletin, 94: 222-235. [50] Dickinson W.R.1985. Interpreting provenance relations from detrital modes of sandstones.Provenance of Arenites, pp. 333-361. [51] Dolson J., Burley S.D., Sunder V.R., Kothari V., Naidu B., Whiteley N.P., Farrimond P., Taylor A., Direen N., Ananthakrishnan B.2015. The discovery of the Barmer Basin, Rajasthan, India, and its petroleum geology.AAPG Bulletin, 99: 433-465. [52] Folk R.L.1974. Petrology of Sedimentary Rocks. Hemphill, Austin. [53] Force E.R.1980. The provenance of rutile.Journal of Sedimentary Research, 50: 485-488. [54] Force E.R.1991. Geology of titanium-mineral deposits.Geological Society of America. [55] Fürsich F.T., Oschmann W., Singh I.B., Jaitly A.K.1992. Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis.Journal of the Geological Society, 149: 313-331. [56] Fürsich, F.T, Pandey D.K., Callomon J.H., Jaitly A.K., Singh I.B.2001. Marker beds in the Jurassic of the Kachchh Basin, Western India: their depositional environment and sequence stratigraphic significance.Journal of Palaeontological Society of India, 46: 173-198 [57] Fürsich F.T., Singh I.B., Joachimski M., Krumm S., Schlirf M., Schlirf S.2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data.Palaeogeography, Palaeoclimatology, Palaeoecology, 217: 289-309. [58] Garzanti E., Andò S., Vezzoli G.2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition.Earth and Planetary Science Letters, 273: 138-151. [59] Garzanti E., Andò S., Vezzoli G.2009. Grain-size dependence of sediment composition and environmental bias in provenance studies.Earth and Planetary Science Letters, 277: 422-432. [60] Gupta S.N.1997. The Precambrian geology of the Aravalli region, Southern Rajasthan, and north-eastern Gujarat, India.Memoir of the Geological Survey of India, 123: 262. [61] Hardas, M. G. (1980). Textural parameters and depositional processes of the sub-surface Serau Formation, Cambay basin.Journal of the Paleontological Society of India, 25: 106-109. [62] Hawthorne, F.C., Dirlam, D.M.2011. Tourmaline the indicator mineral: From atomic arrangement to Viking navigation.Elements, 7: 307-312. [63] Henry, D.J., Guidotti, C.V.1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine.American Mineralogist. 70: 1-15. [64] Henry, D.J., Dutrow, B.L.1992. Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline.Contributions to Mineralogy and Petrology, 112: 203-218. [65] Ingersoll, R.V., Suczek, C.A.1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218.Journal of Sedimentary Research, 49: 1217-1228. [66] Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W.1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method.Journal of Sedimentary Research, 54: 103-116. [67] Jaitly, A.K., Ajane, R.2013. Comments on Placenticeras mintoi (Vredenburg, 1906) from the Bagh Beds (Late Cretaceous), Central India with special reference to turonian nodular limestone horizon.Journal of the Geological Society of India, 81: 565-574. [68] Keller G., Nagori M.L., Chaudhary M., Reddy A.N., Jaiprakash B.C., Spangenberg J.E., Mateo P., Adatte T., 2021. Cenomanian-Turonian sea-level transgression and OAE2 deposition in the Western Narmada Basin, India.Gondwana Research, 94: 73-86. [69] Khan A., Aslam M., Rahman E.2017. Wave-dominated shoreline sediments in Early cretaceous Surajdeval Formation, Saurashtra Basin, Gujarat western India.International Journal of New Technology and Research, 3: 74-78. [70] Kumar B., Srivastava R.K., Jha D.K., Pant N.C., Bhandaree B.K.1990. A revised stratigraphy of the rocks of type area of the Bijawar Group in Central India.Indian Minerals, 44: 303-314. [71] Kumar S., Pathak D.B., Pandey B., Jaitly A.K., Gautam J.P.2018. The age of the Nodular Limestone Formation (Late Cretaceous), Narmada Basin, central India.Journal of Earth System Science, 127: 1-7. [72] Kumari V., Tandon S.K., Kumar N., Ghatak A.2020. Epicontinental Permian-Cretaceous seaways in central India: The debate for the Narmada versus Godavari rifts for the Cretaceous-Tertiary incursion.Earth-Science Reviews, 103284. [73] Mandal S., Robinson D.M., Kohn M.J., Khanal S., Das O., Bose S.2016. Zircon U‐Pb ages and Hf isotopes of the Askot klippe, Kumaun, northwest India: Implications for Paleoproterozoic tectonics, basin evolution and associated metallogeny of the northern Indian cratonic margin.Tectonics, 35: 965-982. [74] Mange, M.A., Wright, D.T.2007. Heavy Minerals in Use. Elsevier. [75] Mange, M.A., Morton, A.C.2007. Geochemistry of heavy minerals.Developments in Sedimentology, 58: 345-391. [76] Meinhold G., Anders B., Kostopoulos D., Reischmann T.2008. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece.Sedimentary Geology, 203: 98-111. [77] Meinhold G.2010. Rutile and its applications in Earth sciences.Earth-Science Reviews, 102: 1-28. [78] Morton A.C., Hallsworth C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones.Sedimentary geology, 124: 3-29. [79] Mukherjee M.K.1983. Petroleum prospects of Cretaceous sediments of the Cambay basin, Gujarat, India.Journal of Petroleum Geology, 5: 275-286. [80] Norton, I.O., Sclater, J.G.1979. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland.Journal of Geophysical Research: Solid Earth, 84: 6803-6830. [81] Pandey, D., Pooniya, D.2015. Sequence stratigraphy of the Oxfordian to Tithonian sediments (Baisakhi Formation) in the Jaisalmer Basin.Volumina Jurassica, 13: 65-76. [82] Pettijohn F.J., Potter P.E., Siever R.1987. Sand and Sandstone (2nd Ed.). Springer, New York. [83] Racey A., Fisher J., Bailey H., Roy S.K.2016. The value of fieldwork in making connections between onshore outcrops and offshore models: an example from India.Geological Society, London, Special Publications, 436: 21-53. [84] Ramakrishnan, M., Vaidyanadhan, R.2008. Geological Society of India, Bangalore 1: 261-333. [85] Rao J.M., Rao G.V.S.P., Widdowson M., Kelley S.P.2005. Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, Central India.Current Science, 88: 502-506. [86] Roy A.B., Jakhar S.R., 2002. Geology of Rajasthan (Northwest India) Precambrian to Recent. Scientific Publishers. [87] Sahni B.1936. The occurrence of Matonidium and Weichselia in India.Records of the GSI, 71: 152-165. [88] Sharma K.K.2000. Evolution of Archean Palaeoproterozoic Crust of the Bundelkhand Craton, Northern Indian Shield.Research Highlights in Earth System Congress, 95-105. [89] Singh, H.P., Venkatachala, B.S.1988. Upper Jurassic-Lower Cretaceous spore-pollen assemblages in peninsular India.Palaeobotanist, 36: 168-176. [90] Singh, S.P., Divedi, S.B.2015. High grade metamorphism in the Bundelkhand massif and its implications on Mesoarchean crustal evolution in central India.Journal of Earth System Science, 124: 197-211. [91] Sinha-Roy S., Malhotra G., Mohanty M., 2013. Geology of Rajasthan. Geological Society of India. [92] Tandon S.K.2000. Spatio-temporal patterns of environmental changes in Late Cretaceous sequences of Central India.In Developments in Palaeontology and Stratigraphy, 17: 225-241. [93] Tolosana-Delgado R., von Eynatten H., Krippner A., Meinhold G.2018. A multivariate discrimination scheme of detrital garnet chemistry for use in sedimentary provenance analysis.Sedimentary Geology, 375: 14-26. [94] Tortosa A., Palomares M., Arribas J.1991. Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis.Geological Society, London, Special Publications, 57: 47-54. [95] Triebold S., von Eynatten H., Luvizotto G.L., Zack T.2007. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany.Chemical Geology, 244: 421-436. [96] Triebold S., von Eynatten H., Zack T.2012. A recipe for the use of rutile in sedimentary provenance analysis.Sedimentary Geology, 282: 268-275. [97] Tripathi S.C.2006. Geology and evolution of the Cretaceous infratrappean basins of lower Narmada valley, western India.Geological Society of India, 67: 459. [98] Trivedi J.R., Gopalan K., Patel P.P.1987. Whole rock and mineral Rb-Sr isochron ages of the Idar Granite, North Gujarat. In Geological evolution of Peninsular India.Petrological and Structural Aspects, 77-83. [99] von Eynatten, H., Gaupp, R.1999. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry.Sedimentary Geology, 124: 81-111. [100] von Eynatten, H., Dunkl, I.2012. Assessing the sediment factory: the role of single grain analysis.Earth-Science Reviews, 115: 97-120. [101] Zack T., Kronz A., Foley S.F., Rivers T.2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists.Chemical Geology, 184: 97-122. [102] Zack T., von Eynatten H., Kronz A.2004b. Rutile geochemistry and its potential use in quantitative provenance studies.Sedimentary Geology, 171: 37-58. [103] Zuffa G.G.1987. Unravelling hinterland and offshore palaeogeography from deep-water arenites.Marine Clastic Sedimentology, pp39-61.