Initiation and evolution of coarse-grained deposits in the Late Quaternary Lake Chenghai source-to-sink system: From subaqueous colluvial apron (subaqueous fans) to Gilbert-type delta
aSchool of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong Province, China; bSINOPEC Geophysical Research Institute, Nanjing 211103, Jiangsu Province, China; cCCCC Second Highway Consultants Co. Ltd., Wuhan 430056, Hubei Province, China
Abstract Investigating the formation and evolution of coarse-grained deposits in modern lakes and the relevant controlling conditions is indispensable to the prediction of reservoir sandbodies, disaster prediction, and limnological research. The source-to-sink system of coarse-grained deposits in Lake Chenghai, a deep, scarped Late Quaternary lake, was investigated in this study based on 62 outcrops, Advanced Land Observing Satellite (ALOS) digital elevation model (DEM) data, and regional geological survey data. The findings include the following: (1) the source areas of coarse-grained deposits in Lake Chenghai were lithologically classified into carbonate source areas, basaltic source areas and siliciclastic source areas, and were geomorphically categorized as scarp type or confluence type. Subaqueous colluvial aprons have formed downstream of the carbonate source areas and scarp-type basaltic source areas, while Gilbert-type deltas have formed downstream of siliciclastic source areas and confluence-type basaltic source areas. (2) The formation and evolution of coarse-grained deposits are controlled by the sediment flux that evolves in synchrony with the geomorphic evolution of the source areas and the sink regimes. Scarps represent the initial landform of the source areas. Source material rolls off or slides down scarps or forms small-scale debris flows before entering the lake. The source material initially formed subaqueous colluvial apron (synonymous with subaqueous fans) where sufficient space was present to accommodate sediments and the basement angle exceeded than the natural angle of repose. As weathering and denudation have progressed, the initial scarps have transformed into confluence-type slopes, and the source material has formed medium- and large-scale debris flows that have entered the lake, resulting in an increase in sediment flux. Consequently, the subaqueous colluvial aprons have rapidly grown and developed subaerial deposits, which have evolved into larger-scale Gilbert-type deltas that overlie the initial aprons. (3) The morphology and distribution of coarse-grained deposits vary in response to differences in quantity and composition of materials from different source areas, which resulting from different rates of weathering and denudation and different sediment input regimes. Firstly, the size and surface slope angle of a subaqueous colluvial apron from a carbonate source are smaller than those of a subaqueous colluvial apron of basaltic origin. Secondly, a Gilbert-type delta from a basaltic source features a greater slope angle and a thicker topset than does a Gilbert-type delta of siliciclastic origin, and the latter exhibits a longer foreset and a thicker bottomset than in the former. Thirdly, the sizes of subaqueous colluvial aprons are not strongly correlated with the sizes of the source areas, while the sizes of Gilbert-type deltas are.
. Initiation and evolution of coarse-grained deposits in the Late Quaternary Lake Chenghai source-to-sink system: From subaqueous colluvial apron (subaqueous fans) to Gilbert-type delta[J]. Journal of Palaeogeography, 2022, 11(2): 194-221.
. Initiation and evolution of coarse-grained deposits in the Late Quaternary Lake Chenghai source-to-sink system: From subaqueous colluvial apron (subaqueous fans) to Gilbert-type delta[J]. Journal of Palaeogeography, 2022, 11(2): 194-221.
[1] Allen P.A.,2008. From landscapes into geological history. Nature 451(7176), 274-276. https://doi.org/10.1038/nature06586. [2] Backert N., Ford M., Malartre F., 2010. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece. Sedimentology 57(2), 543-586. https://doi.org/10.1111/j.1365-3091.2009.01105.x. [3] Bai L.K., Qiu L.W., Yang Y.Q., Du Y.S., Wang J., Han X.T., Dong D.T., Yang B.L., Wang L.F.,2020. Preliminary microfacies division and significance study of nearshore subaqueous fan: A case study from the Lower Cretaceous Xiguayuan Formation, Luanping Basin. Acta Geologica Sinica 94(8), 2446-2459. https://doi.org/10.3969/j.issn.0001-5717.2020.08.020 (in Chinese with English abstract). [4] Barrell J.,1912. Criteria for the recognition of ancient delta deposits. GSA Bulletin 23(1), 377-446. https://doi.org/10.1130/GSAB-23-377. [5] Bauer D.B., Hubbard S.M., Covault J.A., Romans B.W.,2020. Inherited depositional topography control on shelf-margin oversteepening, readjustment, and coarse-grained sediment delivery to deep water, Magallanes Basin, Chile. Frontiers in Earth Science. https://doi.org/10.3389/feart.2019.00358. [6] Bell C.M.,2008. Punctuated drainage of an ice-dammed Quaternary lake in southern South America. Geografiska Annaler: Series A, Physical Geography 90(1), 1-17. https://doi.org/10.1111/j.1468-0459.2008.00330.x. [7] Bi L., Yang S.Y., Li C., Guo Y.L., Wang Q., Liu J.T., Yin P., 2015. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes. Geochemistry, Geophysics, Geosystems 16(9), 3034-3052. https://doi.org/10.1002/2015GC005867. [8] Blair T.C., McPherson J.G., 2008. Quaternary sedimentology of the Rose Creek fan delta, Walker Lake, Nevada, USA, and implications to fan-delta facies models. Sedimentology 55(3), 579-615. https://doi.org/10.1111/j.1365-3091.2007.00913.x. [9] Cao B.X.,ed., 1995. Geomorphology and Quaternary Geology. Wuhan: China University of Geosciences Press (in Chinese). [10] Cao Y.C., Wang Y.Z., Gluyas J.G., Liu H.M., Liu H.N., Song M.S., 2018. Depositional model for lacustrine nearshore subaqueous fans in a rift basin: The Eocene Shahejie Formation, Dongying sag, Bohai Bay Basin, China. Sedimentology 65(6), 2117-2148. https://doi.org/10.1111/sed.12459. [11] Catuneanu O., Hancox P.J., Cairncross B., Rubidge B.S., 2002. Foredeep submarine fans and forebulge deltas: Orogenic off-loading in the underfilled Karoo Basin. Journal of African Earth Sciences 35(4), 489-502. https://doi.org/10.1016/S0899-5362(02)00154-9. [12] Chen X.K., Liu X.B., Peng W.Q., Dong F., Chen Q.C., Sun Y.L., Wang R.N.,2019. Hydroclimatic influence on the salinity and water volume of a plateau lake in southwest China. Science of The Total Environment 659, 746-755. https://doi.org/10.1016/j.scitotenv.2018.12.013. [13] Chiarella D., Capella W., Longhitano S.G., Muto F., 2021. Fault-controlled base-of-scarp deposits. Basin Research 33(2), 1056-1075. https://doi.org/10.1111/bre.12505. [14] Chien N., Wan Z.H., 1999. Hyperconcentrated and debris flows. In: Mechanics of Sediment Transport. Reston: American Society of Civil Engineers, pp. 573-619. [15] Colella A.,1988. Fault-controlled marine Gilbert-type fan deltas. Geology 16(11), 1031-1034. https://doi.org/10.1130/0091-7613(1988)016<1031:FCMGTF>2.3.CO;2. [16] De Batist M., Canals M., Sherstyankin P., Alekseev S., INTAS Project 99-1669 Team,2006. A new bathymetric map of Lake Baikal. Potsdam: Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.1594/GFZ.SDDB.1100. [17] Eide C.H., Howell J.A., Buckley S.J., Martinius A.W., Oftedal B.T., Henstra G.A., 2016. Facies model for a coarse-grained, tide-influenced delta: Gule Horn Formation (Early Jurassic), Jameson Land, Greenland. Sedimentology 63(6), 1474-1506. https://doi.org/10.1111/sed.12270. [18] Elliott T.,1986. Deltas. In: Reading, H.G. (ed.), Sedimentary Environments and Facies. Oxford: Blackwell, pp. 113-154. [19] Ferrer-Boix C., Martín-Vide J.P., Parker G., 2015. Sorting of a sand-gravel mixture in a Gilbert-type delta. Sedimentology 62(5), 1446-1465. https://doi.org/10.1111/sed.12189. [20] Gardner J.V., Dartnell P., Mayer L.A., Hughes-Clarke J.E., 1999. Bathymetry and selected perspective views of Lake Tahoe, California and Nevada. Water-Resources Investigations Report(99-4043). Reston: U. S. Geological Survey. https://doi.org/10.3133/wri994043. [21] Gilbert G.K.,1885. The topographic features of lake shores. In: Powell, J.W. (ed.), Fifth Annual Report of the United States Geological Survey to the Secretary of the Interior, 1883-1884. Washington: Washington Government Printing Office, pp. 104-108. https://doi.org/10.3133/ar5. [22] Gobo K., Ghinassi M., Nemec W.,2014. Reciprocal changes in foreset to bottomset facies in a Gilbert-type delta: Response to short-term changes in base level. Journal of Sedimentary Research 84(11), 1079-1095. https://doi.org/10.2110/jsr.2014.83. [23] Gobo K., Ghinassi M., Nemec W., 2015. Gilbert-type deltas recording short-term base-level changes: Delta-brink morphodynamics and related foreset facies. Sedimentology 62(7), 1923-1949. https://doi.org/10.1111/sed.12212. [24] Henstra G.A., Grundvåg S.A., Johannessen E.P., Kristensen T.B., Midtkandal I., Nystuen J.P., Rotevatn A., Surlyk F., Sæther T., Windelstad J.,2016. Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology 76, 187-209. https://doi.org/10.1016/j.marpetgeo.2016.05.018. [25] Horton J.D.,2017. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August, 2017). Reston: U. S. Geological Survey data release. https://doi.org/10.5066/F7WH2N65. [26] Hu J.J., Zhang H.C., Chang F.Q., Li T., Cai M., Duan L.Z., Zhang L.W., Zhang Y.,2020. Spatial distribution of grain size composition of surface sediments in Lake Cheng (Chenghai) and their influential factors. Acta Sedimentologica Sinica 38(2), 340-348. https://doi.org/10.14027/j.issn.1000-0550.2019.032(in Chinese with English abstract). [27] Huggett R., ed., 2011. Fundamentals of Geomorphology, Third Edition. New York: Routledge. [28] Ji K.Q.,2014. Lake Level Change and Its Controlling Factors in Lake Chenghai since 1573. Kunming: Forth Council of the 9th Yunnan Hydraulic Engineering Society (in Chinese). [29] Kirkby M.J.,1985. A model for the evolution of regolith-mantled slopes. In: Woldenberg, M.J. (ed.), Models in Geomorphology. Oxon: Routledge, pp. 213-237. https://doi.org/10.4324/9780429260476-10. [30] Kong X.X., Jiang Z.X., Han C., Li H.P., Li Q., Zheng L.J., Yang Y.P., Zhang J.G., Xiao F.,2019. Sedimentary characteristics and depositional models of two types of homogenites in an Eocene continental lake basin, Shulu Sag, eastern China. Journal of Asian Earth Sciences 179, 165-188. https://doi.org/10.1016/j.jseaes.2019.04.023. [31] Kononov E.E., Khlystov O.M., Kazakov A.V., Khabuev A.V.,De Batist, M., Naudts, L., Minami, H., 2019. The lake floor morphology of the Southern Baikal rift basin as a result of Holocene and late Pleistocene seismogenic and gravitational processes. Quaternary International 524, 115-121. https://doi.org/10.1016/j.quaint.2019.01.038. [32] Kostic S., Parker G., 2003a. Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling. Journal of Hydraulic Research 41(2), 127-140. https://doi.org/10.1080/00221680309499956. [33] Kostic S., Parker G., 2003b. Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation. Journal of Hydraulic Research 41(2), 141-152. https://doi.org/10.1080/00221680309499957. [34] Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130. [35] Lai S.Y.J., Capart H., 2007. Two-diffusion description of hyperpycnal deltas. Journal of Geophysical Research: Earth Surface 112(F3). https://doi.org/10.1029/2006JF000617. [36] Lai S.Y.J., Capart H., 2009. Reservoir infill by hyperpycnal deltas over bedrock. Geophysical Research Letters 36(8). https://doi.org/10.1029/2008GL037139. [37] Lai S.Y.J., Hsiao Y.T., Wu F.C., 2017. Asymmetric effects of subaerial and subaqueous basement slopes on self‐similar morphology of prograding deltas. Journal of Geophysical Research: Earth Surface 122(12), 2506-2526. https://doi.org/10.1002/2017JF004244. [38] Lee G.R., Jin D.S., 1990. Neoid activity on the Chenghai fracture.Yunnan Geology 9(1), 1-24 (in Chinese with English abstract). [39] Li C., Yang S.Y., Zhao J.X., Dosseto A., Bi L., Clark T.R.,2016. The time scale of river sediment source-to-sink processes in East Asia. Chemical Geology 446, 138-146. https://doi.org/10.1016/j.chemgeo.2016.06.012. [40] Lin Y.S., Zhang M.L., Tan J.M.,2001. The record of paleo-climatic environment in Lugu Lake area of Ninglang county, Yunnan. Carsologica Sinica 20(3), 174-182. https://doi.org/10.3969/j.issn.1001-4810.2001.03.002 (in Chinese with English abstract). [41] Liu Q.H., Zhu X.M., Zeng H.L., Li S.L.,2019. Source-to-sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian Uplift area, offshore Bohai Bay Basin, eastern China. Marine and Petroleum Geology 107, 41-58. https://doi.org/10.1016/j.marpetgeo.2019.05.013. [42] Longhitano S.G.,2008. Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (Southern Apennines, Italy). Sedimentary Geology 210(3-4), 87-110. https://doi.org/10.1016/j.sedgeo.2008.07.004. [43] Lunina O.V., Gladkov A.S., Sherstyankin P.P., 2010. A new electronic map of active faults for southeastern Siberia. Doklady Earth Sciences 433(2), 1016-1021. https://doi.org/10.1134/S1028334X10080064. [44] Ma P.J., Lin C.Y., Ren L.H., Jahren J., Dong D.T., Yu G.D., Ma C.F., Wang D., Liu L.Q., Hellevang H.,2021. Linkage and growth of the independent and coherent faults: Insight into the effect of relay ramps on sedimentation patterns in the northern Bonan Sag, Bohai Bay Basin. Marine and Petroleum Geology 127, 104985. https://doi.org/10.1016/j.marpetgeo.2021.104985. [45] McConnico, T.S., Bassett, K.N., 2007. Gravelly Gilbert-type fan delta on the Conway Coast, New Zealand: Foreset depositional processes and clast imbrications. Sedimentary Geology 198(3-4), 147-166. https://doi.org/10.1016/j.sedgeo.2006.05.026. [46] McPherson J.G., Shanmugam G., Moiola R.J., 1987. Fan-deltas and braid deltas: Varieties of coarse-grained deltas. GSA Bulletin 99(3), 331-340. https://doi.org/10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2. [47] Mindess S., Young J.F., Darwin D., eds., 2003. Concrete, Second Edition. New Jersey: Prentice Hall. [48] Mountjoy J.J., Wang X.M., Woelz S., Fitzsimons S., Howarth J.D., Orpin A.R., Power W., 2019. Tsunami hazard from lacustrine mass wasting in Lake Tekapo, New Zealand. Geological Society, London, Special Publications 477, 413-426. https://doi.org/10.1144/SP477.21. [49] Nemec W.,1990. Aspects of sediment movement on steep delta slopes. In: Colella, A., Prior, D.B. (eds.), Coarse‐Grained Deltas. Oxford: Blackwell, pp. 29-73. https://doi.org/10.1002/9781444303858.ch3. [50] Parsons T., Geist E.L., Ryan H.F., Lee H.J., Haeussler P.J., Lynett P., Hart P.E., Sliter R., Roland E., 2014. Source and progression of a submarine landslide and tsunami: The 1964 Great Alaska earthquake at Valdez. Journal of Geophysical Research: Solid Earth 119(11), 8502-8516. https://doi.org/10.1002/2014JB011514. [51] Pechlivanidou S., Cowie P.A., Duclaux G., Nixon C.W., Gawthorpe R.L., Salles T., 2019. Tipping the balance: Shifts in sediment production in an active rift setting. Geology 47(3), 259-262. https://doi.org/10.1130/G45589.1. [52] Pechlivanidou S., Cowie P.A., Hannisdal B., Whittaker A.C., Gawthorpe R.L., Pennos C., Riiser O.S., 2018. Source-to-sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Research 30(3), 522-543. https://doi.org/10.1111/bre.12263. [53] Postma G.,1990. Depositional architecture and facies of river and fan deltas: a synthesis. In: Colella, A., Prior, D.B. (eds.), Coarse-Grained Deltas. Oxford: Blackwell, pp. 13-27. https://doi.org/10.1002/9781444303858.ch2. [54] Schleiss A.J., Franca M.J., Juez C.,De Cesare, G., 2016. Reservoir sedimentation. Journal of Hydraulic Research 54(6), 595-614. https://doi.org/10.1080/00221686.2016.1225320. [55] Sheng E.G., Yu K.K., Xu H., Lan J.H., Liu B., Che S.,2015. Late Holocene Indian summer monsoon precipitation history at Lake Lugu, northwestern Yunnan Province, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 24-33. https://doi.org/10.1016/j.palaeo.2015.07.026. [56] Singh R.P., Upadhyay V.K., Das A., 1987. Weathering potential index for rocks based on density and porosity measurements. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences 96(3), 239-247. https://doi.org/10.1007/BF02841616. [57] Smith D.G., Jol H.M., 1997. Radar structure of a Gilbert-type delta, Peyto Lake, Banff National Park, Canada. Sedimentary Geology 113(3), 195-209. https://doi.org/10.1016/S0037-0738(97)00061-4. [58] Sømme T.O., Jackson C.A.L., 2013. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 2 - sediment dispersal and forcing mechanisms. Basin Research 25(5), 512-531. https://doi.org/10.1111/bre.12014. [59] Stacey C.D., Hill P.R., 2016. Cyclic steps on a glacifluvial delta, Howe Sound, British Columbia. Geological Society, London, Memoirs, 46(1), 93-94. https://doi.org/10.1144/M46.71. [60] Strupler M., Anselmetti F.S., Hilbe M., Strasser M., 2019. Quantitative characterization of subaqueous landslides in Lake Zurich (Switzerland) based on a high-resolution bathymetric dataset. Geological Society, London, Special Publications 477, 399-412. https://doi.org/10.1144/SP477.7. [61] Sun W.W., Zhang E.L., Liu E.F., Ji M., Chen R., Zhao C., Shen J., Li Y.L.,2017. Oscillations in the Indian summer monsoon during the Holocene inferred from a stable isotope record from pyrogenic carbon from Lake Chenghai, southwest China. Journal of Asian Earth Sciences 134, 29-36. https://doi.org/10.1016/j.jseaes.2016.11.002. [62] Sun Y.C., Zheng J.M., Wang D.F., Li H.S., 1980. Lacustrine subaqueous alluvial fan: One of the frontier of petroleum exploration. Chinese Science Bulletin 25(17), 799-801. https://doi.org/10.1360/csb1980-25-17-799 (in Chinese). [63] Tan C.P., Yu X.H., Liu B.B., Qu J.H., Zhang L., Huang D.J., 2017. Conglomerate categories in coarse-grained deltas and their controls on hydrocarbon reservoir distribution: A case study of the Triassic Baikouquan Formation, Mahu Depression, NW China. Petroleum Geoscience 23(4), 403-414. https://doi.org/10.1144/petgeo2016-017. [64] Tapponnier P., Xu Z.Q., Roger F., Meyer B., Arnaud N., Wittlinger G., Yang J.S., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547), 1671-1677. https://doi.org/10.1126/science.105978. [65] Thomas H.E.,1954. First Fourteen Years of Lake Mead (346). Washington, D. C.: U.S. Department of the Interior. https://doi.org/10.3133/cir346. [66] Van Dijk M., Postma G., Kleinhans M.G., 2009. Autocyclic behaviour of fan deltas: An analogue experimental study. Sedimentology 56(5), 1569-1589. https://doi.org/10.1111/j.1365-3091.2008.01047.x. [67] Wang E., Burchfiel B.C., Royden L.H., Chen L.Z., Chen J.S., Li W.X., Chen Z.L., 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. GSA Special Papers 327, pp. 1-108. https://doi.org/10.1130/SPE327. [68] Xu Y.G., He B., Chung S.L., Menzies M.A., Frey F.A., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32(10), 917-920. https://doi.org/10.1130/G20602.1. [69] Xue L.Q., Galloway W.E., 1991. Fan-delta, braid delta and the classification of delta systems. Acta Geologica Sinica (English Edition) 4(4), 387-400. https://doi.org/10.1111/j.1755-6724.1991.mp4004004.x. [70] Yang B.L., Qiu L.W., Yang Y.Q., Dong D.T., Zhou S.B., Liu Z.W., Bai L.K.,2021. Sedimentary characteristics and transport mechanism of subaqueous coarse clastic rocks in the Lower Cretaceous Xiguayuan Formation in the steep slope zone of Luanping Basin. Earth Science 46(9), 3258-3277. https://doi.org/10.3799/dqkx.2020.355(in Chinese with English abstract). [71] Young M.J., Gawthorpe R.L., Sharp I.R., 2000. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Miocene Suez Rift, Egypt. Sedimentology 47(6), 1081-1104. https://doi.org/10.1046/j.1365-3091.2000.00342.x. [72] Yuan J., Dong D.T., Song F., Liang H.Y., Liang B., Li H.Y., Ma Y.J.,2016. Sedimentary patterns and spatiotemporal evolution of the Member 1 of Paleogene Dainan Formation in deep sag of Gaoyou sag, Subei Basin. Journal of Palaeogeography (Chinese Edition) 18(2), 147-160. https://doi.org/10.7605/gdlxb.2016.02.011 (in Chinese with English abstract). [73] Zhang M., Tian J.C.,1999. The nomenclature, sedimentary characteristics and reservoir potential of nearshore subaqueous fans. Sedimentary Facies and Palaeogeography 19(4), 42-52. https://doi.org/10.3969/j.issn.1009-3850.1999.04.005 (in Chinese with English abstract). [74] Zhang X., Zhu X.M., Lu Z.Y., Lin C.S., Wang X., Pan R., Geng M.Y., Xue Y.,2019. An early Eocene subaqueous fan system in the steep slope of lacustrine rift basins, Dongying Depression, Bohai Bay Basin, China: Depositional character, evolution and geomorphology. Journal of Asian Earth Sciences 171, 28-45. https://doi.org/10.1016/j.jseaes.2018.11.018. [75] Zhu X.M., Pan R., Li S.L., Wang H.B., Zhang X., Ge J.W., Lu Z.Y., 2018. Seismic sedimentology of sand-gravel bodies on the steep slope of rift basins — A case study of the Shahejie Formation, Dongying Sag, eastern China. Interpretation 6(2), SD13-SD27. https://doi.org/10.1190/INT-2017-0154.1.